【机器学习】第六章支持向量机练习题及答案

本文介绍了支持向量机(SVM)的基本原理和特点,包括处理线性不可分问题时采用核函数映射到高维空间,以及硬间隔和软间隔的概念。同时,讨论了不同核函数的优缺点,如高斯核的复杂性和可解释性问题,以及SVM的性能取决于核函数选择、参数C和软间隔。此外,还涵盖了SVM的适用场景,如大规模数据集和多分类问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一. 单选题(共11题,55分)

1. 【单选题】‍对于在原空间中线性不可分问题,支持向量机()。

A. 无法处理

B. 在原空间中寻找线性函数划分数据

C. 将数据映射到核空间中

D. 在原空间中寻找非线性函数的划分数据

正确答案: C

2. 【单选题】关于支持向量机中硬间隔和软间隔的说法错误的是()。

A. 软间隔有利于获取更大的分类间隔

B. 软间隔允许一定的样本分类错误

C. 硬间隔有利于消除模型的过拟合

D. 硬间隔要求所有数据分类完全准确,不允许出现错误

正确答案: C

3. 【单选题】关于各类核函数的优缺点说法错误的是:()。

A. 高斯核能够应对较为复杂的数据

B. 线性核计算简单,可解释性强

C. 多项式核需要多次特征转换

D. 高斯核计算简单,不容易过拟合

正确答案: D

答案解析:D、高斯核
优点:可以映射到无限维;决策边界更为多样;只有一个参数,相比多项式核容易选择。
缺点:可解释性差;计算速度比较慢(解一个对偶问题);容易过拟合(参数选不好时容易过拟合)。

### 关于支持向量机的课后练习解决方案 对于希望深入理解并实践支持向量机SVM)的学习者而言,获取高质量的课后习题及其解答至关重要。在吴恩达教授提供的机器学习课程中,关于支持向量机的内容被安排在第十二周的教学计划里[^1]。 #### 练习题目设计思路 为了帮助学生更好地掌握SVM理论基础以及实际应用技巧,在该章节设置了多项选择题形式的小测验来检验学员的理解程度。这些测试不仅涵盖了优化目标函数等核心概念,还包括如何调整参数C核函数的选择等内容。 #### 实践项目建议 除了完成在线平台上的随堂练习外,还可以尝试参与Kaggle竞赛中的分类问题挑战赛;通过真实数据集的操作加深对算法原理的认识,并学会解决工程实现过程中遇到的各种难题。此外,GitHub上有许多开源的支持向量机案例可供参考学习。 ```python from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.svm import SVC # 加载鸢尾花数据集作为示例 iris = datasets.load_iris() X, y = iris.data[:, [2, 3]], iris.target # 数据预处理 scaler = StandardScaler().fit(X) X_std = scaler.transform(X) # 划分训练集与测试集 X_train, X_test, y_train, y_test = train_test_split( X_std, y, test_size=0.3, random_state=1, stratify=y) # 使用线性核构建模型 svm = SVC(kernel='linear', C=1.0, random_state=1) svm.fit(X_train, y_train) ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值