动手深度学习v2 图像卷积课后习题

本文探讨了卷积神经网络(CNN)中的互相关运算,包括如何将其转换为矩阵乘法。文章通过实例展示了构建具有对角线边缘的图像X,并分析了不同卷积核应用的效果。同时,讨论了使用torch.flip进行张量反转的方法。此外,还引入了用于计算图像二阶导数和积分的卷积核,并探讨了获取任意阶导数所需最小核的大小。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.构建一个具有对角线边缘的图像X。

1.如果将本节中举例的卷积核K应用于X,会发生什么情况?
2.如果转置X会发生什么?
3.如果转置K会发生什么?

都是zero matrix.
2.在我们创建的Conv2D自动求导时,有什么错误消息?
我们前面讲的Conv2D只能算2D的
在这里插入图片描述
这里改一下就行了
在这里插入图片描述
这道题应该就是这个意思

3.如何通过改变输入张量和卷积核张量,将互相关运算表示为矩阵乘法?

在这里插入图片描述
利用torch.flip进行反转

4.手工设计一些卷积核:

搜了一下还不是很懂他的意思
可以看看这个
https://dsp.stackexchange.com/questions/10605/kernels-to-compute-second-order-derivative-of-digital-image

https://math.stackexchange.com/questions/483585/kernels-to-compute-second-order-derivative-of-digital-image
1.二阶导数的核形式是什么?

2.积分的核形式是什么?

3.得到 d 次导数的最小核大小是多少?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值