Batch Normalization 批量归一化

为什么要Batch Normalization?

这是由于Sigmoid的特性
在这里插入图片描述
由于在多层神经网络,后面的X会很容易很大,所以sigmoid会趋近与无穷,而sigmoid趋近与无穷时,梯度的下降会变得很小,我们很难训练神经网络

而Batch Normalization就是为了解决,把X的取值拉回到-5到-5这个区间,这样才有比较好的非线性性

Batch Normalization的好处?

加快了梯度下降

起到类似dropout一样的正则化能力,一定程度上防止过拟合。

比较好调参

不用sigmoid还用Normalization🐎?

前面说的是为了解决Sigmoid的饱和性,那么我们用Relu或者tanh呢?

也是有用的,当数据批量归一化的,数据会更有规律,机器更好去学习。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值