Catalan数,第一类Stirling数和第二类Stirling数

58 篇文章 1 订阅
54 篇文章 0 订阅

一.Catalan数 C(n)

  C(n) 的一个形象的例子是:2*n个括号,其中有n个前括号'('和n个后括号')',排成一列,满足所有括号都匹配的排列数。另一个例子是,n个1和n个-1,共2*n个数,排成一列,满足对所有0<=k<=2*n的前k个数的部分和Sk>=0的排列数。

  C(n)的递推公式是 C(n) = ∑(i = 0 : n-1) { C(n-1-i)*C(i) }

  C(n)的通项公式是 C(n) = ( 1/(n+1) ) * ((2n, n))  ,(( ))表示组合数

  初始值 C(0) = 1

 

二.卡特兰数的扩展

  问题1的描述:有n个1和m个-1(n>=m),共n+m个数排成一列,满足对所有0<=k<=n+m的前k个数的部分和Sk > 0的排列数。 问题等价为在一个格点阵列中,从(0,0)点走到(n,m)点且不经过对角线x==y的方法数(x > y)。

  考虑情况I:第一步走到(0,1),这样从(0,1)走到(n,m)无论如何也要经过x==y的点,这样的方法数为(( n+m-1,m-1 ));

  考虑情况II:第一步走到(1,0),又有两种可能:

    a . 不经过x==y的点;(所要求的情况)

    b . 经过x==y的点,我们构造情况II.b和情况I的一一映射,说明II.b和I的方法数是一样的。设第一次经过x==y的点是(x1,y1),将(0,0)到(x1,y1)的路径沿对角线翻折,于是唯一对应情况I的一种路径;对于情况I的一条路径,假设其与对角线的第一个焦点是(x2,y2),将(0,0)和(x2,y2)之间的路径沿对角线翻折,唯一对应情况II.b的一条路径。

  问题的解就是总的路径数 ((n+m, m)) - 情况I的路径数 - 情况II.b的路径数。

    ((n+m , m)) - 2*((n+m-1, m-1))

  或:  ((n+m-1 , m)) - ((n+m-1 , m-1))

  问题2的描述:有n个1和m个-1(n>=m),共n+m个数排成一列,满足对所有0<=k<=n+m的前k个数的部分和Sk >= 0的排列数。(和问题1不同之处在于此处部分和可以为0,这也是更常见的情况) 问题等价为在一个格点阵列中,从(0,0)点走到(n,m)点且不穿过对角线x==y的方法数(可以走到x==y的点)。 

把(n,m)点变换到(n+1,m)点,问题变成了问题1。

  方法数为:

    ((n+m+1, m)) - 2*((n+m+1-1, m-1))

  或: ((n+m+1-1, m)) - ((n+m+1-1, m-1))


第一类Stirling数 s(p,k)

    

s(p,k)的一个的组合学解释是:n个人分成k组做环排列的方法数目

 

s(p,k)的递推公式: s(p,k)=(p-1)*s(p-1,k)+s(p-1,k-1) ,1<=k<=p-1

边界条件:s(p,0)=0 ,p>=1  s(p,p)=1  ,p>=0


递推关系的说明:

考虑第p个物品,p可以单独构成一个非空循环排列,这样前p-1种物品构成k-1个非空循环排列,方法数为s(p-1,k-1);

也可以前p-1种物品构成k个非空循环排列,而第p个物品插入第i个物品的左边,这有(p-1)*s(p-1,k)种方法。

 

 

第二类Stirling数 S(p,k)

   

S(p,k)的一个组合学解释是:将p个物体划分成k个非空的不可辨别的(可以理解为盒子没有编号)集合的方法数。

k!S(p,k)是把p个人分进k间有差别(如:被标有房号)的房间(无空房)的方法数。

   

S(p,k)的递推公式是:S(p,k)=k*S(p-1,k)+S(p-1,k-1) ,1<= k<=p-1

边界条件:S(p,p)=1 ,p>=0    S(p,0)=0 ,p>=1

  

递推关系的说明:

考虑第p个物品,p可以单独构成一个非空集合,此时前p-1个物品构成k-1个非空的不可辨别的集合,方法数为S(p-1,k-1);

可以前p-1种物品构成k个非空的不可辨别的集合,第p个物品放入任意一个中,这样有k*S(p-1,k)种方法。

  

第一类斯特林数和第二类斯特林数有相同的初始条件,但递推关系不同。


PS:插板法与第二类stirling数都是用来处理n个物品分为p份的处理方法。其区别在于:对于插板法来说,
每个物品是等价的,没有差别的;而对于stirling数来说,每个物品各不相同。

 

题目:HDU3625

 

题意:给N个元素,让我们求K个环排列的方法数。

斯特林第一类数的第推公式:

SN0=0; SNN=1 S00=0 SNK=SN-1K-1+SN-1K*N-1);

 

这个公式的意思是:当前N-1个数构成K-1 个环的时候,加入第N个 ,N只能构成单环!—S(N-1,K-1)如果N-1个数构

成K个环的时候,加入第N个,N可以任意加入,N-1内的一个环里,所以(N-1*SN-1K这个题目里,因为不能破坏

1个门:所以 SNK-S(N-1,K-1)才是能算构成K个环的方法数!就是去掉1自己成环的情况 。


[cpp]  view plain  copy
  1. #include<stdio.h>  
  2. #include<string.h>  
  3. #define N 21  
  4.   
  5. __int64 fac[N]={1,1};  
  6. __int64 stir[N][N];  
  7.   
  8. void init()  
  9. {  
  10.     int i, j;  
  11.     for(i=2;i<N;i++)  
  12.         fac[i]=i*fac[i-1];  
  13.     memset(stir,0,sizeof(stir));  
  14.     stir[0][0]=0;  
  15.     stir[1][1]=1;  
  16.     for(i=2;i<N;i++)  
  17.        for(j=1;j<=i;j++)  
  18.            stir[i][j]=stir[i-1][j-1]+(i-1)*stir[i-1][j];  
  19. }  
  20. int main()  
  21. {  
  22.     init();  
  23.     int t;  
  24.     scanf("%d",&t);  
  25.     while(t--)  
  26.     {  
  27.          int n, k, i;  
  28.          scanf("%d %d",&n,&k);  
  29.          __int64 cnt=0;  
  30.          for(i=1;i<=k;i++)  
  31.              cnt+= stir[n][i] - stir[n-1][i-1];//注意:去掉1自己成环的  
  32.          printf("%.4lf\n",1.0*cnt/fac[n]);  
  33.     }  
  34.     return 0;  
  35. }  


 

 

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值