(Caffe)目录结构

本文系转载,具体出处不详

目录结构

caffe文件夹下主要文件:

  • data 用于存放下载的训练数据
  • docs 帮助文档
  • example 一些代码样例
  • matlab MATLAB接口文件
  • python Python接口文件
  • model 一些配置好的模型参数
  • scripts 一些文档和数据用到的脚本

下面是核心代码文件夹:

  • tools 保存的源码是用于生成二进制处理程序的,caffe在训练时实际是直接调用这些二进制文件。
  • include Caffe的实现代码的头文件
  • src 实现Caffe的源文件

后面的学习主要围绕后面两个文件目录(includesrc)下的代码展开

源码结构

  • src
    • gtest google test一个用于测试的库你make runtest时看见的很多绿色RUN OK就是它,这个与caffe的学习无关,不过是个有用的库
    • caffe 关键的代码都在这里了
      • test 用gtest测试caffe的代码
      • util 数据转换时用的一些代码。caffe速度快,很大程度得益于内存设计上的优化(blob数据结构采用proto)和对卷积的优化(部分与im2col相关)[1]。
      • proto 即所谓的“Protobuf”[2],全称“Google Protocol Buffer”,是一种数据存储格式,帮助caffe提速。
      • layers 深度神经网络中的基本结构就是一层层互不相同的网络了,这个文件夹下的源文件以及目前位置“src/caffe”中包含的我还没有提到的所有.cpp文件就是caffe的核心目录下的核心代码了。

源码主要关系

如上所言我们现在可以知道,caffe核心中的核心是下面的文档和文件:(这部分目前不清楚的地方先参照别人的观点)

  • blob[.cpp .h] 基本的数据结构Blob类[3]。
  • common[.cpp .h] 定义Caffe类
  • internal_thread[.cpp .h] 使用boost::thread线程库
  • net[.cpp .h] 网络结构类Net
  • solver[.cpp .h] 优化方法类Solver
  • data_transformer[.cpp .h] 输入数据的基本操作类DataTransformer
  • syncedmem[.cpp .h] 分配内存和释放内存类CaffeMallocHost,用于同步GPU,CPU数据
  • layer_factory.cpp layer.h 层类Layer
  • layers 此文件夹下面的代码全部至少继承了类Layer




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值