【paper推荐】人脸技术最前沿:从隐私保护到活体检测

关注公众号,发现CV技术之美

今天向大家介绍几份近期的人脸技术的工作,人脸图像处理识别技术作为CV领域的一大分支,仍然有很多内容值得探索。

 ▌Diff-Privacy: Diffusion-based Face Privacy Protection018cd8f8d17737fd98c9dd5b824ff22e.png

论文作者:Xiao He,Mingrui Zhu,Dongxin Chen,Nannan Wang,Xinbo Gao

作者单位:Xidian University; Chongqing University of Posts and Telecommunications

论文链接:http://arxiv.org/abs/2309.05330v1

内容简介:

1)方向:人脸隐私保护

2)应用:网络图片、手机隐私保护

3)背景:随着人工智能技术的普及,个人数据的广泛收集和滥用,隐私保护已成为当务之急。匿名化和视觉身份信息隐藏是两个重要的面部隐私保护任务,它们的目标是在人类感知水平上从面部图像中移除识别特征。

4)方法:本文提出了一种基于扩散模型的面部隐私保护方法,将匿名化和视觉身份信息隐藏统一为一个任务。通过训练多尺度图像反演模块(MSI)获取原始图像的一组SDM格式条件嵌入。基于这些条件嵌入,设计相应的嵌入调度策略,并在去噪过程中构建不同的能量函数,实现匿名化和视觉身份信息隐藏。

5)结果:大量实验证明了所提框架在保护面部隐私方面的有效性。

4e55cf9d77fdbaee468d8fc99986b55d.png a44deec42e7822778b1014363bcbe86a.png 1e71ddc2b5015e8c561a9c27e32b44bb.png e07c2d1c72d3d2168f0ee0e336f25084.png 99166fe3692ab0a1bfcec962e414e8c9.png 95cef794f27ae6a3a450b915c3807e29.png b787ec7b10bcb0add17a6b68bbc3fa50.png a897d44cacb1812139270fae2648d4b2.png a8d595e123601603ec3d7b45dc562c1a.png 0202343e325fc10d318c91e1cdf98d8c.png a49a3d476ac0b45db24a6f8130622884.png 4bb11cfd03107eb0288fa1527fdc0d3d.png 957320d3eb768b6f5733afd6c5ce2bd3.png 74b64897bbd91f410ff1cfd77a45b659.png 8487373fefecd3efc67540736f92288f.png 19124c64e47c9f406baf839edf358085.png

▌Semantic Latent Decomposition with Normalizing Flows for Face Editing25f3e2f04a8f9944a25ed44626a854f0.png

论文作者:Binglei Li,Zhizhong Huang,Hongming Shan,Junping Zhang

作者单位:Fudan University

论文链接:http://arxiv.org/abs/2309.05314v1

项目链接:https://github.com/phil329/SDFlow

内容简介:

1)方向:人脸编辑技术

2)应用:人脸编辑

3)背景:在StyleGAN的隐空间中导航已经显示出对于人脸编辑的有效性。然而,由于隐空间中不同属性之间的纠缠,导致现有方法在复杂导航中遇到挑战。

4)方法:本文提出了一种新的框架SDFlow,通过使用连续条件归一化流在原始隐空间中进行语义分解。具体而言,SDFlow通过联合优化两个组件来将原始隐代码分解为不同的无关变量:(i)一个语义编码器,用于从输入人脸估计语义变量;(ii)一个基于流的转换模块,将隐代码映射到高斯分布中的语义无关变量,条件是学习到的语义变量。为了消除变量之间的纠缠,采用了一个在互信息框架下的解缠学习策略,从而提供精确的操作控制。

5)结果:实验结果表明,SDFlow在定性和定量上都优于现有的最先进的人脸编辑方法。源代码可在https://github.com/phil329/SDFlow上获得。

7a73465659344b62cdfdea42b798051e.png 3aa9d2f70e9394175b150439ed3f8ac9.png 5d165858368273e7e6f4fe96a2068d9f.png 79995eb734fab1932f316d9b601c4446.png 19e69a6b2d6b24d373f03399e718d308.png 8ce2ae1cbe38fd0997ce17549cef147d.png

▌MaskRenderer: 3D-Infused Multi-Mask Realistic Face Reenactmentea1b5283c3d0a6e8d8245f2d6599e6e9.png

论文作者:Tina Behrouzi,Atefeh Shahroudnejad,Payam Mousavi

作者单位:University of Toronto; Amii (Alberta Machine Intelligence Institute)

论文链接:http://arxiv.org/abs/2309.05095v1

内容简介:

1)方向:人脸再现技术

2)应用:生成逼真的面部图像

3)背景:尽管最近的人脸再现研究取得了一些有希望的结果,但仍然存在一些挑战,如身份泄露和模仿口部动作,特别是对于大幅度的姿势变化和被遮挡的面部。

4)方法:MaskRenderer通过以下方法解决了这些问题:(i) 使用3DMM对3D面部结构建模,相对于2D表示更好地处理了姿态变化、遮挡和口部运动;(ii) 在训练过程中使用三元损失函数进行交叉再现以更好地保留身份信息;(iii) 多尺度遮挡,改善修复和恢复缺失区域。

5)结果:在VoxCeleb1测试集上进行的综合定量和定性实验证明,与最先进的模型相比,MaskRenderer在未见过的面孔上表现更好,特别是在源身份和驱动身份非常不同的情况下。

1a0990e3dd63538972301beb2b29f93d.png 3b21acee49ad07c6d02edb16d32a942c.png a05d1000ed6b563ef10974f91771728f.png 60e5e059b6a54d28ca0cef02b116e727.png f7eafffb8bf9a8d22b51620737753661.png e1c64adc5903d5de5c2896605b3fbecd.png 1c401528d8365a6e1ba9bd90bb44926e.png 165885967c8842710a8e272fb291f831.png 398ae8788892b18cb7b8e545b6e3fff0.png

▌Semi-Supervised learning for Face Anti-Spoofing using Apex frame626341cdbf2138024427954e251ab771.png

论文作者:Usman Muhammad,Mourad Oussalah,Jorma Laaksonen

作者单位:University of Oulu;Aalto University

论文链接:http://arxiv.org/abs/2309.04958v1

内容简介:

1)方向:人脸活体检测

2)应用:金融、授权活体验证

3)背景:传统的人脸活体检测领域特征提取技术要么分析整个视频序列,要么专注于特定片段以提升模型性能。然而,确定哪些帧为人脸活体检测提供了最有价值的输入仍然是一个具有挑战性的任务。

4)方法:本文通过采用高斯加权方法来创建视频的顶点帧来解决这个挑战。具体来说,通过计算视频的帧的加权和来得出一个顶点帧,其中权重是使用以视频中心帧为中心的高斯分布确定的。此外,通过探索各种时间长度,使用高斯函数产生多个未标记的顶点帧,无需进行卷积。通过这样做,作者充分利用了半监督学习的好处,它考虑了标记和未标记的顶点帧,从而有效地区分了真实和伪造的类别。

5)结果:实验证明,使用四个人脸活体检测数据库:CASIA、REPLAY-ATTACK、OULU-NPU 和 MSU-MFSD,顶点帧在推动人脸活体检测技术方面具有显著的有效性。

6f9c689a74a2eed62fecd894cc7841ff.png 6f17b468066b01403e053f500e80055a.png 97beb7a6daa934da89de8ad262505413.png 21aef3a631ed059cb5d4bd8b24fa475a.png

8dbba5088a3820e7286c46234f29f2fc.jpeg

END

欢迎加入「目标检测交流群👇备注:OD

1ccbe66f16834977664392c191e115f3.png

内容概要:该论文深入研究了液压挖掘机动臂下降势能回收技术,旨在解决传统液压挖掘机能耗高的问题。提出了一种新型闭式回路势能回收系统,利用模糊PI自整定控制算法控制永磁无刷直流电动机,实现了变转速容积调速控制,消除了节流和溢流损失。通过建立数学模型和仿真模型,分析了不同负载下的系统性能,并开发了试验平台验证系统的高效性和节能效果。研究还涵盖了执行机构能量分布分析、系统元件参数匹配及电机控制性能优化,为液压挖掘机节能技术提供了理论和实践依据。此外,通过实验验证,该系统相比传统方案可降低28%的能耗,控制系统响应时间缩短40%,为工程机械的绿色化、智能化发展提供了关键技术支撑。 适合人群:从事工程机械设计、制造及维护的工程师和技术人员,以及对液压系统节能技术感兴趣的科研人员。 使用场景及目标:①理解液压挖掘机闭式回路动臂势能回收系统的原理和优势;②掌握模糊PI自整定控制算法的具体实现;③学习如何通过理论建模、仿真和实验验证来评估和优化液压系统的性能。 其他说明:此研究不仅提供了详细的理论分析和数学建模,还给出了具体的仿真代码和实验数据,便于读者在实际工作中进行参考和应用。研究结果表明,该系统不仅能显著提高能源利用效率,还能延长设备使用寿命,降低维护成本,具有重要的工程应用价值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值