keras中to_categorical函数解析

1.to_categorical的功能

简单来说,to_categorical就是将类别向量转换为二进制(只有0和1)的矩阵类型表示。其表现为将原有的类别向量转换为独热编码的形式。先上代码看一下效果:

from keras.utils.np_utils import *
#类别向量定义
b = [0,1,2,3,4,5,6,7,8]
#调用to_categorical将b按照9个类别来进行转换
b = to_categorical(b, 9)
print(b)

执行结果如下:
[[1. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 1. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 1. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 1. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 1. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0. 1. 0. 0.]
 [0. 0. 0. 0. 0. 0. 0. 1. 0.]
 [0. 0. 0. 0. 0. 0. 0. 0. 1.]]

 

to_categorical最为keras中提供的一个工具方法,从以上代码运行可以看出,将原来类别向量中的每个值都转换为矩阵里的一个行向量,从左到右依次是0,1,2,...8个类别。2表示为[0. 0. 1. 0. 0. 0. 0. 0. 0.],只有第3个为1,作为有效位,其余全部为0。

2.one_hot encoding(独热编码)介绍

独热编码又称为一位有效位编码,上边代码例子中其实就是将类别向量转换为独热编码的类别矩阵。也就是如下转换:

     0  1  2  3  4  5  6  7  8
0=> [1. 0. 0. 0. 0. 0. 0. 0. 0.]
1=> [0. 1. 0. 0. 0. 0. 0. 0. 0.]
2=> [0. 0. 1. 0. 0. 0. 0. 0. 0.]
3=> [0. 0. 0. 1. 0. 0. 0. 0. 0.]
4=> [0. 0. 0. 0. 1. 0. 0. 0. 0.]
5=> [0. 0. 0. 0. 0. 1. 0. 0. 0.]
6=> [0. 0. 0. 0. 0. 0. 1. 0. 0.]
7=> [0. 0. 0. 0. 0. 0. 0. 1. 0.]
8=> [0. 0. 0. 0. 0. 0. 0. 0. 1.]

那么一道思考题来了,让你自己编码实现类别向量向独热编码的转换,该怎样实现呢?

以下是我自己粗浅写的一个小例子,仅供参考:

def convert_to_one_hot(labels, num_classes):
    #计算向量有多少行
    num_labels = len(labels)
    #生成值全为0的独热编码的矩阵
    labels_one_hot = np.zeros((num_labels, num_classes))
    #计算向量中每个类别值在最终生成的矩阵“压扁”后的向量里的位置
    index_offset = np.arange(num_labels) * num_classes
    #遍历矩阵,为每个类别的位置填充1
    labels_one_hot.flat[index_offset + labels] = 1
    return labels_one_hot
#进行测试
b = [2, 4, 6, 8, 6, 2, 3, 7]
print(convert_to_one_hot(b,9))

测试结果:
[[0. 0. 1. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 1. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0. 1. 0. 0.]
 [0. 0. 0. 0. 0. 0. 0. 0. 1.]
 [0. 0. 0. 0. 0. 0. 1. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 1. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0. 0. 1. 0.]]

 

3.源码解析

to_categorical在keras的utils/np_utils.py中,源码如下:

def to_categorical(y, num_classes=None, dtype='float32'):
    """Converts a class vector (integers) to binary class matrix.
    E.g. for use with categorical_crossentropy.
    # Arguments
        y: class vector to be converted into a matrix
            (integers from 0 to num_classes).
        num_classes: total number of classes.
        dtype: The data type expected by the input, as a string
            (`float32`, `float64`, `int32`...)
    # Returns
        A binary matrix representation of the input. The classes axis
        is placed last.
    # Example
    ```python
    # Consider an array of 5 labels out of a set of 3 classes {0, 1, 2}:
    > labels
    array([0, 2, 1, 2, 0])
    # `to_categorical` converts this into a matrix with as many
    # columns as there are classes. The number of rows
    # stays the same.
    > to_categorical(labels)
    array([[ 1.,  0.,  0.],
           [ 0.,  0.,  1.],
           [ 0.,  1.,  0.],
           [ 0.,  0.,  1.],
           [ 1.,  0.,  0.]], dtype=float32)
    ```
    """
    #将输入y向量转换为数组
    y = np.array(y, dtype='int')
    #获取数组的行列大小
    input_shape = y.shape
    if input_shape and input_shape[-1] == 1 and len(input_shape) > 1:
        input_shape = tuple(input_shape[:-1])
    #y变为1维数组
    y = y.ravel()
    #如果用户没有输入分类个数,则自行计算分类个数
    if not num_classes:
        num_classes = np.max(y) + 1
    n = y.shape[0]
    #生成全为0的n行num_classes列的值全为0的矩阵
    categorical = np.zeros((n, num_classes), dtype=dtype)
    #np.arange(n)得到每个行的位置值,y里边则是每个列的位置值
    categorical[np.arange(n), y] = 1
    #进行reshape矫正
    output_shape = input_shape + (num_classes,)
    categorical = np.reshape(categorical, output_shape)
    return categorical

看过源码之后,确实觉得自己的代码还需要完善。框架里的一些api,我们可以先自己想着来写,然后和源码进行对比学习,这是一个很好的学习方法。

``` !mkdir -p ~/.keras/datasets !cp work/mnist.npz ~/.keras/datasets/ import warnings warnings.filterwarnings("ignore") from keras.datasets import mnist #train_images 和 train_labels 组成了训练集(training set),模型将从这些数据中进行学习。 #然后在测试集(test set,即 test_images 和 test_labels)上对模型进行测试。 (train_images, train_labels), (test_images, test_labels) = mnist.load_data() train_images.shape#看下数据的维度 len(train_labels) train_labels test_images.shape len(test_labels) test_labels from keras import models from keras import layers # 构建神经网络模型 network = models.Sequential() network.add(layers.Dense(512, activation='relu', input_shape=(28 * 28,))) network.add(layers.Dense(10, activation='softmax')) network.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy']) train_images = train_images.reshape((60000, 28 * 28)) train_images = train_images.astype('float32') / 255 test_images = test_images.reshape((10000, 28 * 28)) test_images = test_images.astype('float32') / 255 from keras.utils import to_categorical train_labels = to_categorical(train_labels) test_labels = to_categorical(test_labels) network.fit(train_images, train_labels, epochs=5, batch_size=128) test_loss, test_acc = network.evaluate(test_images, test_labels) print('test_acc:', test_acc)```/opt/conda/lib/python3.6/site-packages/h5py/__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`. from ._conv import register_converters as _register_converters
最新发布
04-08
``` from tensorflow.keras.datasets import mnist, usps from tensorflow.keras.models import Model from tensorflow.keras.layers import Dense, Input # 加载MNIST和USPS数据集 (mnist_train_images, mnist_train_labels), (mnist_test_images, mnist_test_labels) = mnist.load_data() (usps_train_images, usps_train_labels), (usps_test_images, usps_test_labels) = usps.load_data() # 数据预处理 mnist_train_images = mnist_train_images.reshape(-1, 28*28).astype('float32') / 255 mnist_test_images = mnist_test_images.reshape(-1, 28*28).astype('float32') / 255 usps_train_images = usps_train_images.reshape(-1, 28*28).astype('float32') / 255 usps_test_images = usps_test_images.reshape(-1, 28*28).astype('float32') / 255 mnist_train_labels = tf.keras.utils.to_categorical(mnist_train_labels, 10) mnist_test_labels = tf.keras.utils.to_categorical(mnist_test_labels, 10) usps_train_labels = tf.keras.utils.to_categorical(usps_train_labels, 10) usps_test_labels = tf.keras.utils.to_categorical(usps_test_labels, 10) # 定义源领域模型 input_tensor = Input(shape=(28*28,)) x = Dense(256, activation='relu')(input_tensor) x = Dense(256, activation='relu')(x) output_tensor = Dense(10, activation='softmax')(x) source_model = Model(inputs=input_tensor, outputs=output_tensor) source_model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) # 在MNIST数据集上训练源领域模型 source_model.fit(mnist_train_images, mnist_train_labels, epochs=10, batch_size=128, validation_data=(mnist_test_images, mnist_test_labels)) # 定义领域适应模型 feature_extractor = Model(inputs=source_model.input, outputs=source_model.layers[-2].output) target_input = Input(shape=(28*28,)) target_features = feature_extractor(target_input) target_output = Dense(10, activation='softmax')(target_features) domain_adapt_model = Model(inputs=target_input, outputs=target_output) domain_adapt_model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) # 在USPS数据集上微调领域适应模型 domain_adapt_model.fit(usps_train_images, usps_train_labels, epochs=10, batch_size=128, validation_data=(usps_test_images, usps_test_labels)) # 评估领域适应模型 test_loss, test_acc = domain_adapt_model.evaluate(usps_test_images, usps_test_labels) print(f'领域适应模型在USPS测试集上的准确率: {test_acc}')```解释代码
03-19
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值