Spring AI 本地Ollama

目录
Spring AI 介绍
Spring AI 组件介绍
Spring AI 结构化输出
Srping AI 多模态
Spring AI 本地Ollama
Spring AI 源码
Spring AI Advisor机制
Spring AI Tool Calling
Spring AI MCP
Spring AI RAG
Spring AI Agent

相关文档
AI Ollama 下载和安装
大模型 ollama命令详解大全
大模型deepseek-r1 本地ollama部署详解
大模型Ollama RestAPI 详解
Ollama自定义模型

简单样例

Spring AI 与 Ollama 的本地集成方案为开发者提供了便捷的大模型应用开发路径,以下是关键实现步骤和技术要点:

一、Ollama 本地部署

1‌. 安装与启动‌

  • Linux/WSL2 环境:通过脚本一键安装 curl -fsSL https://ollama.ai/install.sh | sh3
  • Windows/macOS:下载官方客户端安装
  • 启动后可通过命令行验证服务状态
  1. 模型下载‌
  • 支持多尺寸模型按需选择(如 DeepSeek-R1 的 1.5B/7B/70B 等版本):
ollama run deepseek-r1:7b
```:ml-citation{ref="3,7" data="citationList"}  
  • 新增多模态引擎优化了图像处理与内存管理
二、Spring AI 集成配置

‌1. 依赖引入‌

<dependency>
    <groupId>io.springboot.ai</groupId>
    <artifactId>spring-ai-ollama</artifactId>
    <version>1.0.3</version>
</dependency>
```:ml-citation{ref="4,6" data="citationList"}  

‌2. 基础代码示例‌

  • 配置 Ollama 连接参数(需与本地服务端口一致)
  • 通过 OllamaChatClient 调用模型 API
三、优化与扩展

-‌ 性能提升‌:结合 NVIDIA/Intel 等硬件厂商的元数据检测优化推理速度
-‌ 国产模型支持‌:DeepSeek LLM 等轻量化模型适合低成本开发
‌- 未来方向‌:Ollama 计划支持更长上下文和流式响应

四、常见问题

‌- 资源不足‌:可选用小参数模型(如 1.5B)适应低配环境
‌- CUDA 内存错误‌:检查 WSL2 或本地 GPU 驱动配置

通过上述方案,开发者可快速构建本地化 AI 应用,兼顾灵活性与性能。

### 集成Spring本地Ollama AI服务 为了实现Spring项目与本地Ollama AI服务的集成,需遵循几个关键步骤来确保项目的顺利构建和功能正常运作。 #### 添加Maven依赖项 在`pom.xml`文件中加入必要的依赖库以支持Web应用程序开发以及与Ollama交互的功能。具体来说: ```xml <dependencies> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-web</artifactId> <version>3.2.5</version> </dependency> <dependency> <groupId>io.springboot.ai</groupId> <artifactId>spring-ai-ollama</artifactId> <version>1.0.3</version> </dependency> </dependencies> ``` 此部分配置使得能够创建基于Spring Boot的应用程序并利用其内置的支持与其他微服务通信的能力[^2]。 #### 配置YAML设置 通过编辑`application.yml`或`application.properties`文件指定连接到本地安装的Ollama实例所需的参数。例如,在YAML格式下可以这样定义: ```yaml spring: application: name: spring-ai-ollama ai: ollama: base-url: http://localhost:11434 # 替换为实际部署位置 chat: options: model: gemma:7b ``` 这里设置了访问路径指向运行于本机上的Ollama服务器,并选择了特定版本的大规模预训练语言模型作为默认选项[^3]。 #### 编写单元测试案例 最后一步是在测试类中编写代码片段验证整个流程是否按预期工作。下面是一个简单的JUnit测试例子展示如何发送请求给Ollama API获取回复消息: ```java @SpringBootTest(classes = DemoApplication.class) class DemoApplicationTests { @Autowired private OllamaChatModel chatModel; @Test void ollamaChat() { ChatResponse response = chatModel.call( new Prompt( "Spring Boot适合做什么?", OllamaOptions.builder() .withModel(OllamaModel.LLAMA3_1) .withTemperature(0.4f) .build()) ); System.out.println(response); } } ``` 这段代码展示了怎样注入`OllamaChatModel`组件并通过它发起对话请求;同时调整了一些超参比如温度值用于控制生成文本随机性的程度[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

王小工

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值