XDU模式识别SVM

题目要求:

在sonar和iris数据集中分别验证SVM算法,可选择不同的核函数,观察其分类结果。并讨论不同训练样本条件下,SVM算法的性能变化。

SVM原理

基本原理

假设在给定的样本集 D = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , ⋯   , ( x m , y m ) } , y i ∈ { − 1 , + 1 } D=\left\{ \left( x_1,y_1 \right) ,\left( x_2,y_2 \right) ,\cdots ,\left( x_m,y_m \right) \right\} ,y_i\in \left\{ -1,+1 \right\} D={(x1,y1),(x2,y2),,(xm,ym)},yi{1,+1}中,如图1所示:
在这里插入图片描述

SVM的目标是,如何选出最鲁棒的划分超平面(图中加粗的那个超平面)。
也就是在图2中找到最大间隔 γ \gamma γ

在这里插入图片描述

也就是:

max ⁡ w , b 2 ∥ w ∥  s.t.  y i ( w T x i + b ) ⩾ 1 , i = 1 , 2 , … , m . \begin{aligned} \max _{\boldsymbol{w}, b} & \frac{2}{\|\boldsymbol{w}\|} \\ \text { s.t. } & y_i\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_i+b\right) \geqslant 1, \quad i=1,2, \ldots, m . \end{aligned} w,bmax s.t. w2yi(wTxi+b)1,i=1,2,,m.

又可以写为:

min ⁡ w , b 1 2 ∥ w ∥ 2  s.t.  y i ( w T x i + b ) ⩾ 1 , i = 1 , 2 , … , m . \begin{aligned} \min _{\boldsymbol{w}, b} & \frac{1}{2}\|\boldsymbol{w}\|^2 \\ \text { s.t. } & y_i\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_i+b\right) \geqslant 1, \quad i=1,2, \ldots, m . \end{aligned} w,bmin s.t. 21w2yi(wTxi+b)1,i=1,2,,m.

核函数

对于线性不可分样本,可将样本从原始空间映射到一个更高维的特征空间, 使得样本在这个特征空间内线性可分. 如图 3 :
在这里插入图片描述

模型可以类似的表示为 min ⁡ w , b 1 2 ∥ w ∥ 2  s.t.  y i ( w T ϕ ( x i ) + b ) ⩾ 1 , i = 1 , 2 , … , m . \begin{aligned} \min _{\boldsymbol{w}, b} & \frac{1}{2}\|\boldsymbol{w}\|^2 \\ \text { s.t. } & y_i\left(\boldsymbol{w}^{\mathrm{T}} \phi\left(\boldsymbol{x}_i\right)+b\right) \geqslant 1, \quad i=1,2, \ldots, m . \end{aligned} w,bmin s.t. 21w2yi(wTϕ(xi)+b)1,i=1,2,,m.
其中常用的核函数有:

  • 线性核: κ ( x i , x j ) = x i T x j \kappa \left( \boldsymbol{x}_{\mathrm{i}},\boldsymbol{x}_{\mathrm{j}} \right) =\boldsymbol{x}_{\mathrm{i}}^{\mathrm{T}}\boldsymbol{x}_{\mathrm{j}} κ(xi,xj)=xiTxj,
  • 多项式核: κ ( x i , x j ) = ( x i T x j ) d \kappa \left( \boldsymbol{x}_{\mathrm{i}},\boldsymbol{x}_{\mathrm{j}} \right) =\left( \boldsymbol{x}_{\mathrm{i}}^{\mathrm{T}}\boldsymbol{x}_{\mathrm{j}} \right) ^d κ(xi,xj)=(xiTxj)d, d ⩾ 1 d \geqslant 1 d1为多项式的次数
  • 高斯核: κ ( x i , x j ) = exp ⁡ ( − ∥ x i − x j ∥ 2 2 σ 2 ) \kappa \left( \boldsymbol{x}_{\mathrm{i}},\boldsymbol{x}_{\mathrm{j}} \right) =\exp \left( -\frac{\left\| \boldsymbol{x}_{\mathrm{i}}-\boldsymbol{x}_{\mathrm{j}} \right\| ^2}{2\sigma ^2} \right) κ(xi,xj)=exp(2σ2xixj2), σ > 0 \sigma>0 σ>0 为高斯核的带宽(width)
  • 拉普拉斯核: κ ( x i , x j ) = exp ⁡ ( − ∥ x i − x j ∥ σ ) \kappa \left( \boldsymbol{x}_{\mathrm{i}},\boldsymbol{x}_{\mathrm{j}} \right) =\exp \left( -\frac{\left\| \boldsymbol{x}_{\mathrm{i}}-\boldsymbol{x}_{\mathrm{j}} \right\|}{\sigma} \right) κ(xi,xj)=exp(σxixj), σ > 0 \sigma>0 σ>0
  • Sigmoid核: κ ( x i , x j ) = tanh ⁡ ( β x i T x j + θ ) \kappa \left( \boldsymbol{x}_{\mathrm{i}},\boldsymbol{x}_{\mathrm{j}} \right) =\tanh \left( \beta \boldsymbol{x}_{\mathrm{i}}^{\mathrm{T}}\boldsymbol{x}_{\mathrm{j}}+\theta \right) κ(xi,xj)=tanh(βxiTxj+θ), tanh ⁡ \tanh tanh 为双曲正切函数, β > 0 , θ < 0 \beta>0, \theta<0 β>0,θ<0

SVM代码实现

import numpy as np  
import matplotlib.pyplot as plt  
from sklearn import datasets  
from sklearn.model_selection import train_test_split  
from sklearn.preprocessing import StandardScaler  
from sklearn.svm import SVC  
from sklearn.metrics import accuracy_score  
  
# 加载Sonar数据集  
sonar_data = datasets.fetch_openml(name='sonar', version=1)  
X_sonar, y_sonar = sonar_data.data, sonar_data.target  
  
# 加载Iris数据集  
iris_data = datasets.load_iris()  
X_iris, y_iris = iris_data.data, iris_data.target  
  
def train_and_evaluate(X, y, kernel, train_size=0.8):  
    # 划分数据集  
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=1-train_size, random_state=42)  
  
    # 特征标准化  
    scaler = StandardScaler()  
    X_train = scaler.fit_transform(X_train)  
    X_test = scaler.transform(X_test)  
  
    # 训练SVM模型  
    svm_model = SVC(kernel=kernel)  
    svm_model.fit(X_train, y_train)  
  
    # 预测  
    y_pred = svm_model.predict(X_test)  
  
    # 计算准确率  
    accuracy = accuracy_score(y_test, y_pred)  
    print(f"Accuracy with {kernel} kernel: {accuracy}")  
    return accuracy  
  
  
sonar_acc = np.array([])  
iris_acc = np.array([])  
  
# 验证不同核函数下的性能(Sonar数据集)  
print("Sonar dataset:")  
kernels = ['linear', 'poly', 'rbf', 'sigmoid']  
for kernel in kernels:  
    acc = train_and_evaluate(X_sonar, y_sonar, kernel)  
    sonar_acc = np.append(sonar_acc, acc)  
  
# 验证不同核函数下的性能(Iris数据集)  
print("\nIris dataset:")  
for kernel in kernels:  
    acc = train_and_evaluate(X_iris, y_iris, kernel)  
    iris_acc = np.append(iris_acc, acc)

通过sklearn中的SVC函数,可以很方便的实现SVM算法。在这个函数中,可以替换很多不同的核函数,如linear——线性核函数,ploy——多项式核函数,rbf——高斯核函数,sigmoid核函数等等。在上述代码中,实现了对sonar,以及iris数据集的SVM分类,并分别使用了上述四种核函数进行对比。

结果分析

对于输出的结果做了可视化如下:
可视化结果

可见不论在哪个数据集中,核函数对最终正确率的影响都不小。而且核函数对正确率的影响会随数据集的特性变化而变化。因此,根据数据集选择合适的核函数是重要的。而SVM算法强大之处也在于核函数。
可视化代码:

import numpy as np  
import matplotlib.pyplot as plt  
  
# 生成柱状图  
labels = ['linear', 'poly', 'rbf', 'sigmoid']  
width = 0.35  # 柱状图的宽度  
  
fig, ax = plt.subplots()  
bar1 = ax.bar(np.arange(len(labels)), sonar_acc, width, edgecolor='k',  
       fc=(130 / 255, 176 / 255, 210 / 255),label='Sonar Accuracy')  
bar2 = ax.bar(np.arange(len(labels)) + width, iris_acc, width, edgecolor='k',  
       fc=(250 / 255, 127 / 255, 111 / 255), label='Iris Accuracy')  
  
# 添加标签和标题  
ax.set_ylim(0.0, 1.25)  
ax.set_xlabel('Kernel')  
ax.set_ylabel('Accuracy')  
ax.set_title('Sonar and Iris Accuracy Comparison')  
ax.set_xticks(np.arange(len(labels)) + width / 2)  
ax.set_xticklabels(labels)  
ax.legend()  
  
# 显示柱状图  
plt.show()
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

End!ess

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值