简介
本文是东南大学和字节跳动AI Lab合作的一篇文章,task是自动为斯诺克比赛生成解说。
下载链接
动机
斯诺克解说可以帮助初学者进行学习,同时能够增加观看比赛的趣味性。现在已经有了NBA视频、国际象棋比赛的自动解说模型,但是这些方法都缺乏了对体育比赛策略的深入分析。
贡献
- 构造了一个数据集,包含10.8k的single shot video、15.7k的commentaries。
- 提出了一个可以自动生成解说的系统,包含三个组件:视频分析器(video analyzer)、策略预测器(strategy predictor)、文本生成器(text generator)。
方法
本文方法的整体框架如下图所示,主要由视频分析器、策略预测器和文本生成器构成。视频分析器用于检测桌子和台球、跟踪台球提取运动信息;策略预测器预测目标球和目标带;文本生成器基于上述结果生成解说。
实验
对于策略生成器部分,经过在2k training instances和200 validation instances上的训练,在200个test instances上进行了测试,准确率如下:
- target ball prediction is 62.25%
- target pocket prediction is 77.04%
- of both is 56.12%.
一些可视化的结果: