在锅炉炉墙保温设计计算过程中,首先应假定锅炉是在额定负荷工况下连续运行的,即锅炉炉墙相对处于稳定导热条件下的传热及散热,以此来确定其保温层厚度。这时炉墙各部分、各点温度场可以简化为不随时间而变化的固定值。
一、 傅里叶导热定律
单位时间内通过单位截面积的所传导的热流密度,正比于当地垂直于截面方向的上的温度梯度:
q
=
−
λ
∂
t
∂
x
q=-\lambda \frac {\partial t} {\partial x}
q=−λ∂x∂t
热流量为:
ϕ
=
−
λ
A
∂
t
∂
x
{\phi }{=-}{\lambda }{A}\frac{\partial t}{\partial x}
ϕ=−λA∂x∂t
式中负号表示热量传递的方向指向温度降低的方向;
二、 平面炉墙稳定导热保温设计计算
图中:
t 0 t_0 t0------炉墙内侧炉膛或烟气通道空间温度( ∘ C \mathtt{{}^\circ\!{C}} ∘C);
t 1 t_1 t1------炉墙内墙表面温度( ∘ C \mathtt{{}^\circ\!{C}} ∘C);
t 2 t_2 t2------炉墙内衬墙与第一保温层界面温度( ∘ C \mathtt{{}^\circ\!{C}} ∘C);
t 3 t_3 t3------炉墙一、二层保温层界面温度( ∘ C \mathtt{{}^\circ\!{C}} ∘C);
t b t_b tb------炉墙外表面温度( ∘ C \mathtt{{}^\circ\!{C}} ∘C);
t H t_H tH------炉墙外周围环境温度( ∘ C \mathtt{{}^\circ\!{C}} ∘C);
λ 1 {\lambda }_1 λ1、 λ 2 {\lambda }_2 λ2、 λ 3 {\lambda }_3 λ3------炉墙结构各层的导热系数( W / ( m ⋅ ∘ C {W}{/(m}{\cdot }{\mathtt{{}^\circ\!{C}}} W/(m⋅∘C));
δ 1 {\delta }_1 δ1、 δ 2 {\delta }_2 δ2、 δ 3 {\delta }_3 δ3------炉墙结构各层的厚度(m);
F------炉墙的散热面积( m 2 m^2 m2);
α 1 {\alpha }_1 α1------火焰气体对炉墙内衬壁面放热系数( W / ( m 2 ⋅ ∘ C {W}{/(}{{m}}^{{2}}{\cdot }{\mathtt{{}^\circ\!{C}}} W/(m2⋅∘C));
α 2 {\alpha }_2 α2------炉墙外表面对周围环境空间放热系数( W / ( m 2 ⋅ ∘ C {W}{/(}{{m}}^{{2}}{\cdot }{\mathtt{{}^\circ\!{C}}} W/(m2⋅∘C));
q 1 q_1 q1、 q 2 q_2 q2、 q 3 q_3 q3、 q 4 q_4 q4、 q 5 q_5 q5------炉墙各层单位面积传热量及散热量( W / m 2 {{W}{/}{m}}^{{2}} W/m2);
ϕ 1 {\phi }_1 ϕ1、 ϕ 2 {\phi }_2 ϕ2、 ϕ 3 {\phi }_3 ϕ3、 ϕ 4 {\phi }_4 ϕ4、 ϕ 5 {\phi }_5 ϕ5------炉墙各层的传热量及散热量(W);
锅炉炉墙传热过程如下:
锅炉炉膛或通道内火焰及烟气以辐射及对流方式将热量 ϕ 1 {\phi }_1 ϕ1传递到炉墙内衬墙表面:
ϕ 1 = F α 1 ( t 0 − t 1 ) ( 1 ) {\phi }_1=F{\alpha }_1(t_0-t_1)(1) ϕ1=Fα1(t0−t1)(1)
单位时间内通过炉墙内衬墙的热量为:
ϕ 2 = F λ 1 ( t 1 − t 2 ) δ 1 ( 2 ) {\phi }_2=F\frac{{\lambda }_1(t_1-t_2)}{{\delta }_1} (2) ϕ2=Fδ1λ1(t1−t2)(2)
单位时间内通过炉墙第一层保温材料的热量为:
ϕ 3 = F λ 2 ( t 2 − t 3 ) δ 2 ( 3 ) {\phi }_3=F\frac{{\lambda }_2(t_2-t_3)}{{\delta }_2}(3) ϕ3=Fδ2λ2(t2−t3)(3)
单位时间内通过炉墙第二层保温材料的热量为:
ϕ 4 = F λ 3 ( t 3 − t 4 ) δ 3 ( 4 ) {\phi }_4=F\frac{{\lambda }_3(t_3-t_4)}{{\delta }_3} (4) ϕ4=Fδ3λ3(t3−t4)(4)
而单位时间内由锅炉炉墙外表面散热于周围空间的热量为:
ϕ 5 = F α 2 ( t b − t H ) ( 5 ) {\phi }_5=F{\alpha }_2(t_b-t_H)(5) ϕ5=Fα2(tb−tH)(5)
由于锅炉为连续运行,其炉墙传热处于稳定状态,所以:
ϕ 1 = ϕ 2 = ϕ 3 = ϕ 4 = ϕ 5 = ϕ ( 6 ) {\phi }_1={\phi }_2={\phi }_3={\phi }_4={\phi }_5=\phi (6) ϕ1=ϕ2=ϕ3=ϕ4=ϕ5=ϕ(6)
综合以上诸式,则:
ϕ = F ( t 0 − t H ) 1 α 1 + δ 1 λ 1 + δ 2 λ 2 + δ 3 λ 3 + 1 α 2 ( 7 ) \phi =\frac{F(t_0-t_H)}{\frac{1}{{\alpha }_1}+\frac{{\delta }_1}{{\lambda }_1}+\frac{{\delta }_2}{{\lambda }_2}+\frac{{\delta }_3}{{\lambda }_3}+\frac{1}{{\alpha }_2}}(7) ϕ=α11+λ1δ1+λ2δ2+λ3δ3+α21F(t0−tH)(7)
而炉墙传热热阻为:
R = 1 α 1 + δ 1 λ 1 + δ 2 λ 2 + δ 3 λ 3 + 1 α 2 ( 8 ) {R}{=}\frac{1}{{\alpha }_1}+\frac{{\delta }_1}{{\lambda }_1}+\frac{{\delta }_2}{{\lambda }_2}+\frac{{\delta }_3}{{\lambda }_3}+\frac{1}{{\alpha }_2}(8) R=α11+λ1δ1+λ2δ2+λ3δ3+α21(8)
所以:
ϕ = F ( t 0 − t H ) R ( 9 ) \phi =\frac{F(t_0-t_H)}{R}(9) ϕ=RF(t0−tH)(9)
于是炉墙结构各层厚度及温度等关系可导出如下各算式:
t 1 = t 0 − 1 α 1 R ( t 0 − t H ) ( 10 ) t_1=t_0-\frac{\frac{1}{{\alpha }_1}}{R}(t_0-t_H)(10) t1=t0−Rα11(t0−tH)(10)
t 2 = t 0 − 1 α 1 + δ 1 λ 1 R ( t 0 − t H ) ( 11 ) t_2=t_0-\frac{\frac{1}{{\alpha }_1}+\frac{{\delta }_1}{{\lambda }_1}}{R}(t_0-t_H) (11) t2=t0−Rα11+λ1δ1(t0−tH)(11)
t 3 = t 0 − 1 α 1 + δ 1 λ 1 + δ 2 λ 2 R ( t 0 − t H ) ( 12 ) t_3=t_0-\frac{\frac{1}{{\alpha }_1}+\frac{{\delta }_1}{{\lambda }_1}+\frac{{\delta }_2}{{\lambda }_2}}{R}(t_0-t_H)(12) t3=t0−Rα11+λ1δ1+λ2δ2(t0−tH)(12)
t b = t 0 − 1 α 1 + δ 1 λ 1 + δ 2 λ 2 + δ 3 λ 3 R ( t 0 − t H ) = t H + 1 α 2 R ( t 0 − t H ) ( 13 ) t_b=t_0-\frac{\frac{1}{{\alpha }_1}+\frac{{\delta }_1}{{\lambda }_1}+\frac{{\delta }_2}{{\lambda }_2}+\frac{{\delta }_3}{{\lambda }_3}}{R}(t_0-t_H)=t_H+\frac{\frac{1}{{\alpha }_2}}{R}(t_0-t_H) (13) tb=t0−Rα11+λ1δ1+λ2δ2+λ3δ3(t0−tH)=tH+Rα21(t0−tH)(13)
根据炉墙结构具体情况,按其各种材料,材质层数(第1、2、…n层)计算,上式(8)及式(13)可以是:
R = 1 α 1 + δ 1 λ 1 + ⋯ + δ n λ n + 1 α 2 ( 14 ) {R}{=}\frac{1}{{\alpha }_1}+\frac{{\delta }_1}{{\lambda }_1}+\cdots +\frac{{\delta }_n}{{\lambda }_n}+\frac{1}{{\alpha }_2}(14) R=α11+λ1δ1+⋯+λnδn+α21(14)
t b = t 0 − 1 α 1 + δ 1 λ 1 + ⋯ + δ n λ n R ( t 0 − t H ) ( 15 ) t_b=t_0-\frac{\frac{1}{{\alpha }_1}+\frac{{\delta }_1}{{\lambda }_1}+\cdots +\frac{{\delta }_n}{{\lambda }_n}}{R}(t_0-t_H)(15) tb=t0−Rα11+λ1δ1+⋯+λnδn(t0−tH)(15)
上列诸式中,如为炉膛炉墙计算, t 0 t_0 t0可即视为炉膛内的燃烧温度,参见相关热力计算,或也可以简易地以理论燃烧温度乘0.8作为 t 0 t_0 t0值。如是烟气流程通道部分炉墙计算,则可视为烟气温度为 t 0 t_0 t0值。
三、 圆筒炉墙稳定导热保温设计计算
图中:
t 0 t_0 t0------炉墙内侧炉膛或烟气通道空间温度( ∘ C \mathtt{{}^\circ\!{C}} ∘C);
t 1 t_1 t1------炉墙内墙表面温度( ∘ C \mathtt{{}^\circ\!{C}} ∘C);
t 2 t_2 t2------炉墙内衬墙与第一保温层界面温度( ∘ C \mathtt{{}^\circ\!{C}} ∘C);
t 3 t_3 t3------炉墙一、二层保温层界面温度( ∘ C \mathtt{{}^\circ\!{C}} ∘C);
t b t_b tb------炉墙外表面温度( ∘ C \mathtt{{}^\circ\!{C}} ∘C);
t H t_H tH------炉墙外周围环境温度( ∘ C \mathtt{{}^\circ\!{C}} ∘C);
λ 1 {\lambda }_1 λ1、 λ 2 {\lambda }_2 λ2、 λ 3 {\lambda }_3 λ3------炉墙结构各层的导热系数( W / ( m ⋅ ∘ C {W}{/(m}{\cdot }{\mathtt{{}^\circ\!{C}}} W/(m⋅∘C));
r 0 r_0 r0、 r 1 r_1 r1、 r 2 r_2 r2、 r 3 r_3 r3------炉墙各层圆筒的半径(m);
F 0 F_0 F0、 F 1 F_1 F1、 F 2 F_2 F2、 F 3 F_3 F3------炉墙各层的散热面积( m 2 m^2 m2);
α 1 {\alpha }_1 α1------火焰气体对炉墙内衬壁面放热系数( W / ( m 2 ⋅ ∘ C {W}{/(}{{m}}^{{2}}{\cdot }{\mathtt{{}^\circ\!{C}}} W/(m2⋅∘C));
α 2 {\alpha }_2 α2------炉墙外表面对周围环境空间放热系数( W / ( m 2 ⋅ ∘ C {W}{/(}{{m}}^{{2}}{\cdot }{\mathtt{{}^\circ\!{C}}} W/(m2⋅∘C));
q 1 q_1 q1、 q 2 q_2 q2、 q 3 q_3 q3、 q 4 q_4 q4、 q 5 q_5 q5------炉墙各层单位面积的传热量及散热量(W);
ϕ 1 {\phi }_1 ϕ1、 ϕ 2 {\phi }_2 ϕ2、 ϕ 3 {\phi }_3 ϕ3、 ϕ 4 {\phi }_4 ϕ4、 ϕ 5 {\phi }_5 ϕ5------炉墙各层的传热量及散热量(W);
传热量计算过程分析:
对于单层圆筒壁:
ϕ = q ∗ F = q ∗ 2 π r ∗ H = − λ d t d r ∗ 2 π r ∗ H \phi =q*F=q*2\pi r*H={-}{\lambda }\frac{dt}{dr}{*}2\pi r*H ϕ=q∗F=q∗2πr∗H=−λdrdt∗2πr∗H
进行整理:
ϕ ∗ d r r = − λ ∗ d t ∗ 2 π H \phi *\frac{dr}{r}={-}{\lambda }{*}dt*2\pi H ϕ∗rdr=−λ∗dt∗2πH
对其进行积分:
ϕ ∗ ∫ r 0 r 1 d r r = − 2 λ π H ∫ t 1 t 2 d t \phi *\int^{r_1}_{r_0}{\frac{dr}{r}}={-}{2}{\lambda }\pi H\int^{{{t}}_{{2}}}_{{{t}}_{{1}}}{{dt}} ϕ∗∫r0r1rdr=−2λπH∫t1t2dt
进行整理:
ϕ = 2 π λ H ( t 1 − t 2 ) l n r 1 r 0 \phi =\frac{{2}\pi {\lambda }H({{t}}_{{1}}-{{t}}_{{2}})}{{{ln} \frac{r_1}{r_0}\ }} ϕ=lnr0r1 2πλH(t1−t2)
锅炉炉墙传热过程如下:
锅炉炉膛或通道内火焰及烟气以辐射及对流方式将热量 q 1 q_1 q1传递到炉墙内衬墙表面:
ϕ 1 = 2 π r 0 H α 1 ( t 0 − t 1 ) ( 15 ) {\phi }_1={2}\pi r_0H{\alpha }_1(t_0-t_1) (15) ϕ1=2πr0Hα1(t0−t1)(15)
单位时间内通过炉墙内衬墙的热量为:
ϕ 2 = 2 π λ 1 H ( t 1 − t 2 ) l n r 1 r 0 ( 16 ) {\phi }_2=\frac{{2}\pi {{\lambda }}_1H({{t}}_{{1}}-{{t}}_{{2}})}{{{ln} \frac{r_1}{r_0}\ }}(16) ϕ2=lnr0r1 2πλ1H(t1−t2)(16)
单位时间内通过炉墙第一层保温材料的热量为:
ϕ 3 = 2 π λ 2 H ( t 2 − t 3 ) l n r 2 r 1 ( 17 ) {\phi }_3=\frac{{2}\pi {{\lambda }}_2H({{t}}_{{2}}-{{t}}_{{3}})}{{{ln} \frac{r_2}{r_1}\ }} (17) ϕ3=lnr1r2 2πλ2H(t2−t3)(17)
单位时间内通过炉墙第二层保温材料的热量为:
ϕ 4 = 2 π λ 3 H ( t 3 − t b ) l n r 3 r 2 ( 18 ) {\phi }_4=\frac{{2}\pi {{\lambda }}_3H({{t}}_{{3}}-{{t}}_{{b}})}{{{ln} \frac{r_3}{r_2}\ }} (18) ϕ4=lnr2r3 2πλ3H(t3−tb)(18)
而单位时间内由锅炉炉墙外表面散热于周围空间的热量为:
ϕ 5 = 2 π r 3 H α 2 ( t b − t H ) {\phi }_5={2}\pi r_3H{\alpha }_2(t_b-t_H) ϕ5=2πr3Hα2(tb−tH) (19)
由于锅炉为连续运行,其炉墙传热处于稳定状态,所以:
ϕ 1 = ϕ 2 = ϕ 3 = ϕ 4 = ϕ 5 = ϕ ( 20 ) {\phi }_1={\phi }_2={\phi }_3={\phi }_4={\phi }_5=\phi (20) ϕ1=ϕ2=ϕ3=ϕ4=ϕ5=ϕ(20)
综合以上诸式,则:
ϕ = t 0 − t H 1 2 π r 0 H α 1 + l n r 1 r 0 2 π λ 1 H + l n r 2 r 1 2 π λ 2 H + l n r 3 r 2 2 π λ 3 H + 1 2 π r 3 H α 2 ( 21 ) \phi =\frac{t_0-t_H}{\frac{1}{{2}\pi r_0H{\alpha }_1}+\frac{{{ln} \frac{r_1}{r_0}\ }}{{2}\pi {{\lambda }}_1H}+\frac{{{ln} \frac{r_2}{r_1}\ }}{{2}\pi {{\lambda }}_2H}+\frac{{{ln} \frac{r_3}{r_2}\ }}{{2}\pi {{\lambda }}_3H}+\frac{1}{{2}\pi r_3H{\alpha }_2}}(21) ϕ=2πr0Hα11+2πλ1Hlnr0r1 +2πλ2Hlnr1r2 +2πλ3Hlnr2r3 +2πr3Hα21t0−tH(21)
而炉墙传热热阻为:
R = 1 2 π r 0 H α 1 + l n r 1 r 0 2 π λ 1 H + l n r 2 r 1 2 π λ 2 H + l n r 3 r 2 2 π λ 3 H + 1 2 π r 3 H α 2 ( 22 ) {R}{=}\frac{1}{{2}\pi r_0H{\alpha }_1}+\frac{{{ln} \frac{r_1}{r_0}\ }}{{2}\pi {{\lambda }}_1H}+\frac{{{ln} \frac{r_2}{r_1}\ }}{{2}\pi {{\lambda }}_2H}+\frac{{{ln} \frac{r_3}{r_2}\ }}{{2}\pi {{\lambda }}_3H}+\frac{1}{{2}\pi r_3H{\alpha }_2} (22) R=2πr0Hα11+2πλ1Hlnr0r1 +2πλ2Hlnr1r2 +2πλ3Hlnr2r3 +2πr3Hα21(22)
所以:
ϕ = t 0 − t H R ( 23 ) \phi =\frac{t_0-t_H}{R} (23) ϕ=Rt0−tH(23)
于是炉墙结构各层厚度及温度等关系可导出如下各算式:
t 1 = t 0 − 1 2 π r 0 H α 1 R ( t 0 − t H ) ( 24 ) t_1=t_0-\frac{\frac{1}{{2}\pi r_0H{\alpha }_1}}{R}(t_0-t_H)(24) t1=t0−R2πr0Hα11(t0−tH)(24)
t 2 = t 0 − 1 2 π r 0 H α 1 + l n r 1 r 0 2 π λ 1 H R ( t 0 − t H ) ( 25 ) t_2=t_0-\frac{\frac{1}{{2}\pi r_0H{\alpha }_1}+\frac{{{ln} \frac{r_1}{r_0}\ }}{{2}\pi {{\lambda }}_1H}}{R}(t_0-t_H)(25) t2=t0−R2πr0Hα11+2πλ1Hlnr0r1 (t0−tH)(25)
t 3 = t 0 − 1 2 π r 0 H α 1 + l n r 1 r 0 2 π λ 1 H + l n r 2 r 1 2 π λ 2 H R ( t 0 − t H ) ( 26 ) t_3=t_0-\frac{\frac{1}{{2}\pi r_0H{\alpha }_1}+\frac{{{ln} \frac{r_1}{r_0}\ }}{{2}\pi {{\lambda }}_1H}+\frac{{{ln} \frac{r_2}{r_1}\ }}{{2}\pi {{\lambda }}_2H}}{R}(t_0-t_H) (26) t3=t0−R2πr0Hα11+2πλ1Hlnr0r1 +2πλ2Hlnr1r2 (t0−tH)(26)
t b = t 0 − 1 2 π r 0 H α 1 + l n r 1 r 0 2 π λ 1 H + l n r 2 r 1 2 π λ 2 H + l n r 3 r 2 2 π λ 3 H R ( t 0 − t H ) = t H + 1 2 π r 3 H α 2 R ( t 0 − t H ) ( 27 ) t_b=t_0-\frac{\frac{1}{{2}\pi r_0H{\alpha }_1}+\frac{{{ln} \frac{r_1}{r_0}\ }}{{2}\pi {{\lambda }}_1H}+\frac{{{ln} \frac{r_2}{r_1}\ }}{{2}\pi {{\lambda }}_2H}+\frac{{{ln} \frac{r_3}{r_2}\ }}{{2}\pi {{\lambda }}_3H}}{R}(t_0-t_H)=t_H+\frac{\frac{1}{{2}\pi r_3H{\alpha }_2}}{R}(t_0-t_H) (27) tb=t0−R2πr0Hα11+2πλ1Hlnr0r1 +2πλ2Hlnr1r2 +2πλ3Hlnr2r3 (t0−tH)=tH+R2πr3Hα21(t0−tH)(27)
上列诸式中,如为炉膛炉墙计算, t 0 t_0 t0可即视为炉膛内的燃烧温度,参见相关热力计算,或也可以简易地以理论燃烧温度乘0.8作为 t 0 t_0 t0值。如是烟气流程通道部分炉墙计算,则可视为烟气温度为 t 0 t_0 t0值。
四、 炉墙外表面散热损失计算
若在工程中核算锅炉炉墙中各种材料的导热系数 λ \lambda λ值,则要重视 λ \lambda λ值高低变化与温度工况密切相关:
λ t = λ 0 + α t ( 28 ) {\lambda }_t={\lambda }_0+\alpha t(28) λt=λ0+αt(28)
式中
λ
t
{\lambda }_t
λt、
λ
0
{\lambda }_0
λ0各分别为t
∘
C
\mathtt{{}^\circ\!{C}}
∘C及0
∘
C
\mathtt{{}^\circ\!{C}}
∘C时的导热系数,
α
\alpha
α为常数,t为应用温度。计算时选取材料两侧假定温度平均值的导热系数,再经视差法验算使计算温度与假定温度符合接近为合适。
α
2
{\alpha }_2
α2为炉墙表面对周围环境空间的传热系数,包括辐射传热
α
r
{\alpha }_r
αr及对流传热
α
c
{\alpha }_c
αc、所以炉墙总散热损失q为:
q = ( α r + α c ) ( t b − t H ) = α 2 ( t b − t H ) ( 29 ) {q=(\alpha }_r{+\alpha }_c)(t_b-t_H)={\alpha }_2(t_b-t_H)(29) q=(αr+αc)(tb−tH)=α2(tb−tH)(29)
α r = C ( T b 100 ) 4 − ( T H 100 ) 4 t b − t H ( 30 ) {\alpha }_r=C\frac{{(\frac{T_b}{100})}^4-{(\frac{T_H}{100})}^4}{t_b-t_H}(30) αr=Ctb−tH(100Tb)4−(100TH)4(30)
式中:
T
b
=
(
t
b
+
273.15
)
(
K
)
T_b=(t_b+273.15)(K)
Tb=(tb+273.15)(K)
T
H
=
(
t
H
+
273.15
)
(
K
)
T_H=(t_H+273.15)(K)
TH=(tH+273.15)(K)
C 为炉墙外表面材料的辐射系数(
W
/
(
m
2
⋅
k
4
{W}{/(}{{m}}^{{2}}{\cdot }{{k}}^{{4}}
W/(m2⋅k4))
C值如表1所示:
材料 | 混凝土 | 砖质材料 | 黑皮铁板 | 镀锌铁板 | 铝板 | 光面铝板 |
---|---|---|---|---|---|---|
C值 | 4.6 | 4 | 3.4 | 1.2 | 1.17 | 0.94 |
α c {\alpha }_c αc实际上包括对流及传导两项传热方式,按其形状位置及温差不同而 α c {\alpha }_c αc值也不同。
(1)平板垂直
α c {\alpha }_c αc见表2所示:
( t b − t H ) (t_b-t_H) (tb−tH)( ∘ C \mathtt{{}^\circ\!{C}} ∘C) | 0 | 5 | 10 | 25 | 50 | 60 |
---|---|---|---|---|---|---|
α c {\alpha }_c αc | 3 | 3.4 | 3.8 | 4.9 | 5.9 | 6.14 |
或也可用式(31)及式(32)计算:
t b − t H < 10 ∘ C : α c = 3 + 0.08 ( t b − t H ) ( 31 ) t_b-t_H<10\mathtt{{}^\circ\!{C}} : {\alpha }_c=3+0.08(t_b-t_H)(31) tb−tH<10∘C:αc=3+0.08(tb−tH)(31)
t b − t H > 10 ∘ C : α c = 2.2 t b − t H 4 ( 32 ) t_b-t_H>10\mathtt{{}^\circ\!{C}}: {\alpha }_c=2.2\sqrt[4]{t_b-t_H}(32) tb−tH>10∘C:αc=2.24tb−tH(32)
(2)平板水平向上
α c {\alpha }_c αc值见表3所示:
( t b − t H ) (t_b-t_H) (tb−tH)( ∘ C \mathtt{{}^\circ\!{C}} ∘C) | 0 | 5 | 10 | 25 | 50 | 60 |
---|---|---|---|---|---|---|
α c {\alpha }_c αc | 0 | 4.2 | 5 | 6.3 | 7.45 | 7.8 |
或也可以用式(33)计算:
α c = 8 t b − t H 4 ( 33 ) {\alpha }_c=8\sqrt[4]{t_b-t_H}(33) αc=84tb−tH(33)
(3)平板水平向下
α c {\alpha }_c αc值见表4所示:
( t b − t H ) (t_b-t_H) (tb−tH)( ∘ C \mathtt{{}^\circ\!{C}} ∘C) | 0 | 5 | 10 | 25 | 50 | 60 |
---|---|---|---|---|---|---|
α c {\alpha }_c αc | 0 | 2.2 | 2.7 | 3.4 | 4.0 | 4.2 |
或也可以用下式计算:
α c = 1.5 t b − t H 4 ( 34 ) {\alpha }_c=1.5\sqrt[4]{t_b-t_H}(34) αc=1.54tb−tH(34)
以上所列各 α c {\alpha }_c αc为周围环境空气呈静止状态下的数值。实际空气处于流动、扰动状态,所以按表2、表3、表4及式(31) ∼ {\sim} ∼式(35)计算之数值应乘以系数W:
W = V + 0.348 V ( 35 ) {W}{=}\sqrt{\frac{{V+0.348}}{{V}}}(35) W=VV+0.348(35)
式中:V------流动于炉墙壁面的空气流速(m/s);