本文主要来源于《高等流体力学 [付强 编著] 2015年版》,并做了部分修改和优化;
一、音速
在可压缩流体中,如果某处产生一个微弱的局部压力扰动,这个压力扰动将以波面的形式在流体中传播,其传播速度称为音速,也称当地声速,记作c;
用一个管道(活塞系统)说明微弱扰动波的传播。设在无限长的等断面管道中充满静止的可压缩流体,其压强、密度和温度分别为p、ρ、T。管道左侧有一个活塞,此活塞突然以一个微小速度dv向右运动,如图1所示。
由于活塞的突然起动,紧贴活塞的流体也随之以速度dv向右运动,同时收到压缩,使压强、密度、温度有所增加,变为p+dp、ρ+dρ、T+dT。而远方的流体尚未收到干扰,速度仍为零,压强、密度、温度仍为p、ρ、T。受扰动和未受扰动的分界面称为波面,随着时间的推移,扰动区逐渐扩大,波面向右传播,其速度c就是音速。
扰动波的传播对于绝对静止坐标系来说是非定常流动,这对于问题的研究很不方便,为此,我们取一个固定在波面上的运动坐标系,在此运动坐标系观察到的流动是定常的,如图2。在波面上取一个控制体,控制体右边的流体流速、压强、密度和温度是c、p、ρ、T,而在左边,这些流动参数则是c-dv、p+dp、ρ+dρ、T+dT,左、右两个面积都等于管道面积。对于此控制体,定常运动的连续性方程为:
ρ
c
A
=
(
ρ
+
d
ρ
)
(
c
−
d
v
)
A
或
d
v
=
d
ρ
ρ
+
d
ρ
c
\rho cA=\left ( {\rho +d\rho } \right )\left ( {c-dv} \right )A 或dv=\frac {d\rho } {\rho +d\rho }c
ρcA=(ρ+dρ)(c−dv)A或dv=ρ+dρdρc
根据定常运动的动量方程,作用在控制体上的外力和等于单位时间内流出和流入的动量之差:
∑
F
=
(
m
v
)
o
u
t
−
(
m
v
)
i
n
\sum {F}=\left ( {mv} \right )_{out}-\left ( {mv} \right )_{in}
∑F=(mv)out−(mv)in
带入本模型就有(以向左为正方向):
p
A
−
(
p
+
d
p
)
A
=
(
ρ
+
d
ρ
)
(
c
−
d
v
)
2
A
−
ρ
c
2
A
p A-(p+d p) A=(\rho+d \rho)(c-d v)^{2} A-\rho c^{2} A
pA−(p+dp)A=(ρ+dρ)(c−dv)2A−ρc2A
略去二阶微量:
−
d
p
=
ρ
c
d
v
-dp=\rho cdv
−dp=ρcdv
将
d
v
=
d
ρ
ρ
+
d
ρ
c
dv=\frac {d\rho } {\rho +d\rho }c
dv=ρ+dρdρc带入,故:
c
2
=
(
ρ
+
d
ρ
)
d
p
ρ
d
ρ
{c}^{2}=\frac {\left ( {\rho +d\rho } \right )dp} {\rho d\rho }
c2=ρdρ(ρ+dρ)dp
略去二阶微量:
c
=
d
p
d
ρ
(
1
)
c=\sqrt {\frac {dp} {d\rho }} (1)
c=dρdp(1)
该式对液体和气体都适用。
对于气体,由于小扰动波的传播速度很快,与外界来不及进行热交换,且各项参数的变化量微小,小扰动波的传播过程是一个既绝热有没能量损失的等熵过程。由等熵过程方程:
p
ρ
k
=
常数(
2
)
\frac {p} {{\rho }^{k}}=常数 (2)
ρkp=常数(2)
式中,k—绝热指数。将上式微分,整理并带入理想气体状态方程
p
ρ
=
R
g
T
\frac {p} {\rho }={R}_{g}T
ρp=RgT,得:
d
p
d
ρ
=
k
p
ρ
=
k
R
g
T
\frac {dp} {d\rho }=k\frac {p} {\rho }=k{R}_{g}T
dρdp=kρp=kRgT
将以上关系带入(1),便得到气体中音速公式:
c
=
k
p
ρ
=
k
R
g
T
(
3
)
c=\sqrt {k\frac {p} {\rho }}=\sqrt {k{R}_{g}T} (3)
c=kρp=kRgT(3)
综合以上分析,可以看出:
- 音速与流体的压缩性有关。密度对压强的变化率 d ρ d p \frac {d\rho} {dp } dpdρ反应流体的压缩性, d ρ d p \frac {d\rho} {dp } dpdρ越大,其倒数 d p d ρ \frac {dp} {d\rho } dρdp越小,音速 c = d p d ρ c=\sqrt {\frac {dp} {d\rho }} c=dρdp越小,流体容易压缩;反之, c = d p d ρ c=\sqrt {\frac {dp} {d\rho }} c=dρdp越大,流体不易压缩;不可压缩流体c→∞。所以音速是反映流体压缩性大小的物理参数。
- 音速与状态参数T有关( c = k R g T c=\sqrt {k{R}_{g}T} c=kRgT)。在气体动力学中,温度是空间坐标的函数,所以,c也是空间坐标的函数。为强调这一点,常称c为当地音速。
- 声速与气体的种类有关。音速与气体的绝热指数k和气体常数
R
g
{R}_{g}
Rg有关,所以不同气体音速不同,对于空气,k=1.4,
R
g
{R}_{g}
Rg=287J/(kg∙K),代入
c
=
k
p
ρ
=
k
R
g
T
c=\sqrt {k\frac {p} {\rho }}=\sqrt {k{R}_{g}T}
c=kρp=kRgT得:
c = 20.1 T c=20.1\sqrt {T} c=20.1T