监督式机器学习的基本术语

关于机器学习系统:通过学习如何组合输入西悉尼,来对未见过的数据做出有用的预测。

下面来学习一些常用术语。以一个简单的线性回归为例。由于概念比较多,所以大部分是慕课上PPT的截图,以备后续复习使用。
在这里插入图片描述

监督式机器学习

1、标签和特征

标签:是我们要预测的真实事物
线性回归中的y变量

特征:是指用于描述数据的输入变量
线性回归中的{x1, x2, x3,…,xn}变量

2、样本和模型

样本是指数据的特定实例:x

  • 有标签样本具有{特征,标签}:{x,y}
    用于训练模型
  • 无标签样本具有{特征,?}:{x,?}
    用于对新数据做出预测

模型可将样本映射到预测标签:y’
由模型的内部参数定义,这些内部参数值是通过学习得到的。

3、训练

(1)训练模型表示通过有标签样本来学习(确定)所有权重和偏差的理想值
(2)在监督式学习中,机器学习算法通过以下方式构建模型:检查多个样本并尝试找出可最大限度地减少损失的模型。
这一过程称为经验风险最小化

4、损失

损失是对糟糕预测的惩罚:损失是一个数值,表示对于单个样本而言模型,也是预测的准确程度,如果模型的预测完全准确,则损失为零,否则损失会较大。训练模型的目标是从所有样本中找到一组**平均损失“较小”**的权重和偏差。
在这里插入图片描述
在这里插入图片描述

模型训练与降低损失

1、模型训练要点

在这里插入图片描述

2、收敛

在这里插入图片描述

3、计算损失例子

在这里插入图片描述

梯度下降法

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

学习率

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MYH永恒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值