题意:
给定k个二元组(ai,ri)(1<=i<=k),表示x对ai模运算的余数为ri,然后据此求解最小的正整数x。
思路:
我们再回到这道题上来,下面的解题思路参考了网上的方法,现说明如下:
假设我们求出了一个同余方程x=ri(mod ai)的一个解x,那么x+k*ai也是该方程的解。
例如对于两个同余方程:
x=r1(mod a1)
x=r2(mod a2)
x=y*a1+r1,x=z*a2+r2 -> a1*y-a2*z=r2-r1,然后采用扩展欧几里德算法求解出最小的y值,再回代到x=y*a1+r1中求出最小的x值即可。
我们采用类似数学归纳法的思路,假定已经求解出了前i-1个同余方程的公共解,那这个公共解
一定是这样的形式:x+k*LCM(LCM表示a1,a2...ai-1的最小公倍数)。
那么对于第i个同余方程有这样的类型:
(x+k*LCM)=ri(mod ai),其中x,LCM,ri以及ai都是已知的。
我们稍微转化一下原式,得到 k*LCM+ai*y=ri-x,也就是a*x+b*y=c的通用形式,其中
LCM对应于a,k对应于x,ai对应于b,y就对应于y,ri-x对应于c,然后调用ext_gcd(a,b,x,y)就可以求解了。求出最小的k值,从而根据x+k*LCM更新当前所求的x值,接着再更新LCM值,然后,依次迭代下去,就可以求解出最终的结果了。
代码如下所示:
# include<iostream>using namespace std;
const int M=100;
//扩展欧几里德算法
__int64 ext_gcd(__int64 a,__int64 b,__int64 &x,__int64 &y)
{
__int64 d,tmp;
if(b==0)
{
x=1;
y=0;
return a;
}
else
{
d=ext_gcd(b,a%b,x,y);
tmp=y;
y=x-a/b*y;
x=tmp;
return d;
}
}
//中国剩余定理
//a[]表示k个互质数,r[]为k个同余方程的余数
__int64 china_reminder(__int64 a[],__int64 r[],int k)
{
__int64 n,m,x,y,s;
int i;
n=1;s=0;
for(i=0;i<k;i++)
n*=a[i];
for(i=0;i<k;i++)
{
m=n/a[i];
ext_gcd(m,a[i],x,y);
s=(s+r[i]*m*x)%n;
}
if(s<0)
s+=n;
return s;
}
int main()
{
__int64 a1,r1,a2,r2,d,x,y,c,t,result;
int i,k;
bool ok= true;
while(scanf("%d",&k)!=EOF)
{
ok= true;
scanf("%I64d%I64d",&a1,&r1);
for(i=1;i<k;i++)
{
scanf("%I64d%I64d",&a2,&r2);
if(!ok)
continue;
c=r2-r1;//相当于一般形式ax+by=c中的c
d=ext_gcd(a1,a2,x,y);
if(c%d)
{
ok= false;
continue;
}
result=x*c/d;
t=a2/d;
y=(result%t+t)%t; //求最小的正整数解y
x=a1*y+r1;//根据x=y*a1+r1求最小的x
r1=x;//下一次迭代时x将变成已知量,相当于r1
a1=a1*a2/d;//下一次迭代时a1则变成了lcm(a1,a2)
}
if(!ok)
printf("-1\n");
else
printf("%I64d\n",x);
}
return 0;
}