POJ2891 Strange Way to Express Integers

题目大意&&思路:

m≡r1+a1*y1           

m≡r2+a2*y2  ……

m≡ri+ai*yi

ai之间不互素,所以不是中国剩余定理,而是线性同余方程,直接模板。


AC program:

 

#include<iostream>
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<math.h>
using namespace std;
typedef __int64 LL;
void exgcd(LL  a,LL  b  ,LL &d ,LL  &x,  LL  &y)
{
  if(b==0)
  {
    x=1;
    y=0;
    d=a;        
  }     
  else
      {
       exgcd(b,a%b,d,y,x);
       y-=x*(a/b); 
      } 
} 
int main()
{
LL n,a1,r1,a2,r2,ans,a,b,c,d,x0,y0;
while(cin>>n)
{
  bool ifhave=1;
  cin>>a1>>r1;
  for(int i=1;i<n;i++)
  {
    cin>>a2>>r2;
    a=a1;
    b=a2;
    c=r2-r1;
    exgcd(a,b,d,x0,y0);
    if(c%d!=0)
      {
        ifhave=0;        
      }        
    int t=b/d;
    x0=(x0*(c/d)%t+t)%t;
    r1=a1*x0+r1;
    a1=a1*(a2/d); 
  }             
  if(!ifhave)
    cout<<"-1"<<endl;
  else
     cout<<r1<<endl; 
} 
return 0;} 


 

 

做此题之前看一下这篇博客应该蛮不错的:http://hi.baidu.com/poeticxuan/item/cc114fdf4f02d3c4241f4040(下面的程序来自此博客)

 

题意:
给定k个二元组(ai,ri)(1<=i<=k),表示x对ai模运算的余数为ri,然后据此求解最小的正整数x。

思路:
我们再回到这道题上来,下面的解题思路参考了网上的方法,现说明如下:
假设我们求出了一个同余方程x=ri(mod ai)的一个解x,那么x+k*ai也是该方程的解。
例如对于两个同余方程:
x=r1(mod a1)
x=r2(mod a2)
x=y*a1+r1,x=z*a2+r2 -> a1*y-a2*z=r2-r1,然后采用扩展欧几里德算法求解出最小的y值,再回代到x=y*a1+r1中求出最小的x值即可。
我们采用类似数学归纳法的思路,假定已经求解出了前i-1个同余方程的公共解,那这个公共解
一定是这样的形式:x+k*LCM(LCM表示a1,a2...ai-1的最小公倍数)。
那么对于第i个同余方程有这样的类型:
(x+k*LCM)=ri(mod ai),其中x,LCM,ri以及ai都是已知的。
我们稍微转化一下原式,得到 k*LCM+ai*y=ri-x,也就是a*x+b*y=c的通用形式,其中

LCM对应于a,k对应于x,ai对应于b,y就对应于y,ri-x对应于c,然后调用ext_gcd(a,b,x,y)就可以求解了。求出最小的k值,从而根据x+k*LCM更新当前所求的x值,接着再更新LCM值,然后,依次迭代下去,就可以求解出最终的结果了。

代码如下所示:

# include<iostream>
using namespace std;
const int M=100;
//扩展欧几里德算法
__int64 ext_gcd(__int64 a,__int64 b,__int64 &x,__int64 &y)
{
    __int64 d,tmp;
    if(b==0)
    {
        x=1;
        y=0;
        return a;
    }
    else
    {
        d=ext_gcd(b,a%b,x,y);
        tmp=y;
        y=x-a/b*y;
        x=tmp;
        return d;
    }
}
//中国剩余定理
//a[]表示k个互质数,r[]为k个同余方程的余数
__int64 china_reminder(__int64 a[],__int64 r[],int k)
{
    __int64 n,m,x,y,s;
    int i;
    n=1;s=0;
    for(i=0;i<k;i++)
        n*=a[i];
    for(i=0;i<k;i++)
    {
        m=n/a[i];
        ext_gcd(m,a[i],x,y);
        s=(s+r[i]*m*x)%n;
    }
    if(s<0)
        s+=n;
    return s;
}

int main()
{
    __int64 a1,r1,a2,r2,d,x,y,c,t,result;
    int i,k;
    bool ok= true;
    while(scanf("%d",&k)!=EOF)
    {
        ok= true;
        scanf("%I64d%I64d",&a1,&r1);
        for(i=1;i<k;i++)
        {
            scanf("%I64d%I64d",&a2,&r2);
            if(!ok)
                continue;
            c=r2-r1;//相当于一般形式ax+by=c中的c
            d=ext_gcd(a1,a2,x,y);
            if(c%d)
            {
                ok= false;
                continue;
            }
            result=x*c/d;
            t=a2/d;
            y=(result%t+t)%t; //求最小的正整数解y
            x=a1*y+r1;//根据x=y*a1+r1求最小的x
            r1=x;//下一次迭代时x将变成已知量,相当于r1
            a1=a1*a2/d;//下一次迭代时a1则变成了lcm(a1,a2)
        }
        if(!ok)
            printf("-1\n");
        else
            printf("%I64d\n",x);
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值