HDU 1005 Number Sequence

题目大意&&思路:

矩阵快速幂:   a  b     *        f(n-1)              f(n)

                        1   0              f(n-2)   =         f(n-1)

 

所以:       (   a   b   )^(n-2)      *     f(2)   =       f(n)                ( n>=3)

                        1   0                             f(1)            f(n-1)

所以求得基本矩阵的n-2次方后,在得到的矩阵当中第一项加上第二项即可              x*f(2)+y*(1)即:x+y;记得取模即可

 

AC program:

#include<iostream>
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<algorithm>
using namespace std;
int aa,bb,n;
struct matrix
{
  int a,b,c,d;       
}ju,tmp,tmppp; 
matrix fn(matrix k,matrix g)//模拟矩阵运算,用循环模拟也行 
{
  matrix kg;
  kg.a=((k.a*g.a)%7+(k.b*g.c)%7 )%7; ///
  kg.b=((k.a*g.b)%7+(k.b*g.d)%7 )%7; 
  kg.c=((k.c*g.a)%7+(k.d*g.c)%7 )%7; 
  kg.d=((k.c*g.b)%7+(k.d*g.d)%7 )%7;
  return kg; 
} 
matrix qmod(int r)//快速幂 
{
  if(r==1)return ju;
  tmp=qmod(r/2);
  tmppp=fn(tmp,tmp);
  if(r&1)return fn(tmppp,ju);
  return tmppp;    
} 
int main()
{ 
while(cin>>aa>>bb>>n,n+aa+bb)
{
ju.a=aa;//初始化基本矩阵 
ju.b=bb;
ju.c=1;
ju.d=0;
   if(n==1||n==2){cout<<1<<endl;continue;}                          
   matrix result=qmod(n-2);//记得指数n-2!!!
   cout<<(result.a+result.b)%7<<endl;//最后这里记得要取模                 
} 
//cin>>aa;    
return 0;} 


 

在网上溜达了一下,原来还可以找循环节

做题方法:
前是打表,就是打出一大堆数据,然后发现规率:
发现这道题是从f[1]=1,和f[2]=1开始,然后依次模7,就可知f[n]只有7种情况,而相数相邻只有7*7=49种
,所以从f[1]到f[49]必会出现相邻两个f[m-1]=1,f[m]=1,所以f[m]为周期函数,49为其一个周期;
代码如下:*/

#include<stdio.h>
int main()
{
    int f[56],a,b,i;
    f[0]=1;f[1]=1;
    int n;
    while(1)
    {
        scanf("%d%d%d",&a,&b,&n);
        if(!a && !b && !n)
            break;
        for(i=2;i<49;i++)
            f[i]=(a*f[i-1]+b*f[i-2])%7;
        printf("%d\n",f[(n-1)%49]);
    }
    return 0;
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值