深度学习相关概念:权重初始化


  权重初始化(weight initialization)又称参数初始化,在深度学习模型训练过程的本质是对weight(即参数 W)进行更新,但是在最开始训练的时候是无法更新的,这需要每个参数有相应的初始值。在进行权重初始化后,神经网络就可以对权重参数w不停地迭代更新,以达到较好的性能。

1.全零初始化(×)

  全零初始化是我们要避免的,它无法训练网络。因为全零初始化后,神经网络训练时,在反向传播时梯度相同,参数更新大学也一样,最后会出现输出层两个权值相同,隐层神经元参数相同,也就是说神经网络失去了特征学习的能力。通俗点说,把神经网络比作你在爬山,但身处直线形的山谷中,两边是对称的山峰。如果全零初始化,由于对称性,你所在之处的梯度只能沿着山谷的方向,不会指向山峰;你走了一步之后,情况依然不变。结果就是你只能收敛到山谷中的一个极大值,而走不到山峰上去。

2.随机初始化

2.1 高斯分布/均匀分布

  实验网络结构:10个隐层,1个输出层,每个隐层包含500个神经元,使用的双曲正切激活函数(tanh)。

2.1.1权重较小— N ( 0 , 0.01 ) \pmb{\mathcal{N}(0,0.01)} N(0,0.01)

在这里插入图片描述

在这里插入图片描述

  除了前两层,后续所有层的激活值为0;此时,输入信息传递不到输出层;最终,网络得不到训练。小权重高斯初始化(小型网络中很常见),然而当网络越来越深的时候,会出现梯度消失的情况。

2.1.1权重较大— N ( 0 , 1 ) \pmb{\mathcal{N}(0,1)} N(0,1)

在这里插入图片描述

在这里插入图片描述
  几乎所有的神经元都饱和了(不是-1就是1);前向传播时,神经元要么被抑制(0),要么被饱和(1)。此时,神经元局部梯度都是零,网络没有反向梯度流(梯度消失);最终,所有的参数得不到更新。

2.1.3存在问题:

  随机初始化其实很难的,尝试太小的值,信息传不过去(2.1.1中权重分布都在0),值太大的时候梯度信息传递过去了,他们又进入了饱和区,梯度缺变成了0(2.1.2中权重不是1就是-1),虽然能让我的梯度传过来的每个成员的这个算的结果不一样,得出来的更新全值不一样但是很多时候能更新的机会都没有。在2.1.1的前项传播中,信息流消失;在2.1.2的反向传播中的梯度消失了,网络是没法训练的。

  那到底怎么应该初始化呢?

  有效的初始化方法:使网络各层的激活值和局部梯度方差在传播过程中尽量保持一致;以保持网络中正向和反向数据流动。

2.2 Xavier初始化

2.2.1 原理

  假设一个神经元, 其输入为 z 1 , z 2 , ⋯ z N z_{1}, z_{2}, \cdots z_{N} z1,z2,zN, 这 N N N 个输入是独立同分布的; 其权值为 w 1 , … … , w N w_{1}, \ldots \ldots, w_{N} w1,……,wN, 它们也是独立同分布的,且 w w w z z z 是独立的; 其激活函数为 f f f; 其最终输出 y y y 的表达式:
y = f ( w 1 ∗ z 1 + ⋯ + w N ∗ z N ) y=f\left(w_{1} * z_{1}+\cdots+w_{N} * z_{N}\right) y=f(w1z1++wNzN)
  基本思想: 使网络各层的激活值和局部梯度的方差在传 播过程中尽量保持一致, 即寻找 w w w 的分布使得输 出 y \mathrm{y} y 与输入 z z z 的方差一致.

  假设 f \pmb{f} f 为双曲正切函数, w 1 , ⋯   , w N \pmb{w_{1}, \cdots, w_{N}} w1,,wN 独立同分布, z 1 , ⋯   , z N \pmb{z_{1}, \cdots, z_{N}} z1,,zN 独立同 分布, 随机变量w与 z z z 独立, 且均值都为 0 , 则有:
Var ⁡ ( y ) = Var ⁡ ( ∑ i = 1 N w i z i ) = ∑ i = 1 N Var ⁡ ( w i z i ) = ∑ i N [ E ( w i ) ] 2 Var ⁡ ( z i ) + [ E ( z i ) ] 2 Var ⁡ ( w i ) + Var ⁡ ( w i ) Var ⁡ ( z i ) = ∑ i N Var ⁡ ( w i ) Var ⁡ ( z i ) = N Var ⁡ ( w i ) Var ⁡ ( z i ) \begin{aligned} \operatorname{Var}(y) &=\operatorname{Var}\left(\sum_{i=1}^{N} w_{i} z_{i}\right)=\sum_{i=1}^{N} \operatorname{Var}\left(w_{i} z_{i}\right) \\ &=\sum_{i}^{N}\left[E\left(w_{i}\right)\right]^{2} \operatorname{Var}\left(\mathrm{z}_{i}\right)+\left[E\left(z_{i}\right)\right]^{2} \operatorname{Var}\left(w_{i}\right)+\operatorname{Var}\left(w_{i}\right) \operatorname{Var}\left(z_{i}\right) \\ &=\sum_{i}^{N} \operatorname{Var}\left(w_{i}\right) \operatorname{Var}\left(z_{i}\right) \\ &=N\operatorname{Var}\left(\mathrm{w}_{i}\right) \operatorname{Var}\left(z_{i}\right) \end{aligned} Var(y)=Var(i=1Nwizi)=i=1NVar(wizi)=iN[E(wi)]2Var(zi)+[E(zi)]2Var(wi)+Var(wi)Var(zi)=iNVar(wi)Var(zi)=NVar(wi)Var(zi)
  当且仅当 var ⁡ ( w ) = 1 / N \pmb{\operatorname{var}(w)=1 / N} var(w)=1/N 时, y \pmb{y} y 的方差与 z \pmb{z} z 的方差一致。因此我们可以采用 N ( 0 , 1 / N ) \pmb{\mathcal{N}(0,1 / N)} N(0,1/N)的高斯分布,为输入神经元个数。

2.2.2 N ( 0 , 1 / N ) \pmb{\mathcal{N}(0,1 / N)} N(0,1/N)高斯分布

  Xavier初始化可以帮助减少梯度消失的问题,使得信号在神经网络中可以传递得更深,在经过多层神经元后保持在合理的范围。每层神经元激活值的方差基本相同。符合正态分布,这样前向的信息流可以传递,反向传播梯度也可以更新。
在这里插入图片描述

2.2.3 Xavier初始化局限性

  Xavier初始化能够很好的 tanh 激活函数。但是对于目前最常用的 ReLU 激活函数,Xavier初始化表现的很差。
在这里插入图片描述
  在较浅的层中效果还不错,但是随着神经网络层数的增加,权重趋势却是越来越接近0。

  那如何解决ReLU激活函数的初始化?

  采用恺明初始化(He 初始化)

2.3 He 初始化(MSRA)

  He 初始化(MSRA)与Xavier初始化不同在哪里?

  Xavier初始化采用的是 N ( 0 , 1 / N ) \pmb{\mathcal{N}(0,1 / N)} N(0,1/N)高斯分布,He 初始化(MSRA)采用的是 N ( 0 , 2 / N ) \pmb{\mathcal{N}(0,2 / N)} N(0,2/N)高斯分布。

  He 初始化(MSRA)原理

  在ReLU网络中,假定每一层有一半的神经元被激活,另一半为0(x负半轴中是不激活的),所以要保持variance不变,只需要在Xavier的基础上再除以2:
在这里插入图片描述

3.权重初始化总结

  1. 好的初始化方法可以防止前向传播过程中的信息消失,也可以解决反向传递过程中的梯度消失。

  2. 激活函数选择双曲正切或者Sigmoid时,建议使用Xaizer初始化方法

  3. 激活函数选择ReLU或Leakly ReLU时,推荐使用He初始化方法

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AiCharm

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值