认识BI

一、BI的定义

BI是Business Intelligence的英文缩写,中文解释为商务智能,用来帮助企业更好地利用数据提高决策质量的技术集合,是从大量的数据中钻取信息与知识的过程。 简单讲就是业务、数据、数据价值应用的过程。用图解的方式可以理解为下图:

图(1)

这样不难看出,传统的交易系统完成的是Business到Data的过程,而BI要做的事情是在Data的基础上,让Data产生价值,这个产生价 值的过程就是Business Intelligence analyse的过程。
如何实现Business Intelligence analyse的过程,从技术角度来说,是一个复杂的技术集合,它包含ETL、DW、OLAP、DM等多环节,基本过程可用下图描述。

图(2)

上图流程,简单的说就是把交易系统已经发生过的数据,通过ETL工具抽取到主题明确的数据仓库中,OLAP后生成Cube或报表,透过Portal 展现给用户,用户利用这些经过分类(Classification)、聚集(Clustering)、描述和可视化(Description and Visualization)的数据,支持业务决策。

说明:
BI不能产生决策,而是利用BI过程处理后的数据来支持决策。哪么BI所谓的智能到底是什么呢?(理清这个概念,有助于对BI的应 用。)BI最终展现给用户的信息就是报表或图视,但它不同于传统的静态报表或图视,它颠覆了传统报表或图视的提供与阅读的方式,产生的数据集合就象玩具 “魔方”一样,可以任意快速的旋转组合报表或图视,有力的保障了用户分析数据时操作的简单性、报表或图视直观性及思维的连惯性。

我想这是大家热衷于BI的根本原因。

二、BI的诞生

随着IT技术的进步,传统的业务交易系统有了长足的发展,已经实现了业务信息化,每一笔业务数据都记录在数据库中,星转斗移,累积了以TB为计量单 位的业务数据记录。也许你会问:这么多数据,占用了很多存储设备,耗费存储成本,却又不经常访问,留着它有什么用处?可以给你肯定的回答,留着这些历史数 据意义巨大,挖掘业务的规律、支持决策。

典型的案例有“尿片和啤酒”的故事, 尿片和啤酒本来是两样不相干的东西,可是,有人就发现,星期五在超市里购物的,购买尿片的年轻父亲中有30%~40%的人同时购买啤酒。原来,星期五年轻 的父亲购买尿片时,还会为自己捎带买啤酒,因为,星期五是各家电视台转播橄榄球赛的时间,于是,超市老板们就把尿片和啤酒捆绑销售获得了巨大成功。
这 个故事成了一个利用数据挖掘商业价值最大化的神话。 由此看来,非常不关联的两样东西,通过海量的信息数据处理,可以挖掘出它们之间潜在的关联,将这种关联商业化,就会得到意想不到的新业务或新的商业模式。
到 底该怎样把这些占据大量存储空间的数据的价值挖掘出来,让这些数据从成本的消耗者变成利润的促进者呢?新的数据分析技术由此诞生了,完成了“数据”到“数 据价值”转换的环节,同时给这项技术起了一个响亮而又神密的名字“BI”(Business Intelligence)

三、基本技术
BI(Business Intelligence) 是一种运用了数据仓库、在线分析和数据挖掘等技术来处理和分析数据的崭新技术,目的是为企业决策者提供决策支持。这似乎是BI的官方定义,也是广大BI玩 家一成不变的宗旨,哪么BI技术涉及了哪些方面呢?从图(2)中,我们不难看出其核心技术中ETL、DW及OLAP。或者说是“数据处理技术”与“数据展 现技术”更加容易理解。

为什么要在操作型数据库和 OLAP 之间加一层“数据仓库”呢?
说一千道一万都计算机资源与效能惹的 祸,操作型数据库以快速响应业务为主要目标,而OLAP的时候要占用大量的硬件资源,在OLAP的时候,业务操作很难快速响应,无法保证业务的顺利进行, 从业务、数据、数据的价值的逻辑来看,没有业务就谈不上OLAP;零星分散的数据一般存在有多个应用,对应多个业务操作型数据库,访问效能极其低下。综合 上述资源与效能的问题,最高效的方法就是将数据先整合到数据仓库中,而 由OLAP应用统一从数据仓库里取数,以解决快速响应业务与OLAP的矛盾。
但 是,多了这么一层,不管ROLAP还是MOLAP都无法查看实时数据,这并不影响BI的应用,90%的BI应用都不要求实时性,允许数据有滞后,这是决策 支持系统的应用特点,这个滞后区间就是数据抽取工具工作及OLAP的时间。

四、数据处理

(1)ODS,(Operational Data Store)是数据仓库体系结构中的一个可选部分,ODS具备数据仓库的部分特征和OLTP系统的部分特征,它是“面向主题的、集成的、当前或接近当前 的、不断变化的”数据。

一般在带有ODS的系统体系结构中,ODS都设计都有如下特点:
1) 在业务系统和数据仓库之间的数据过渡离层。
如果业务数据来源 比较复杂,一般采用构造ODS的方法来实现收集当前需要处理的数据。如下述数据来源:
a、业务数据库种类繁多。业务交易系统使用了不同种的数据 库,如DB2、Informix、Oracle、SQL server、文本等。
b、不同的应用系统、不同的地理位置。
c、订阅数据源。
d、 批量还原非传统数据库数据。
... ...等等。用于存放从业务系统直接抽取出来的数据,这些数据从数据结构、数据之间的逻辑关系上都与业务系统基本保持一致。
2) 保存当前或接近当前的细节数据,以供查询或ETL检错使用。
3) 数据存储周期性。ODS中存储的数据都是临时的,每次ETL之前都要清空ODS中存储的数据。

(2)ETL,(Extract Transform Load)操作型业务数据库(DB)到数据仓库(DW)的过程称之为ETL,它实现数据的抽取,转换及装载工作。

抽取:将数据从各种原始的业务系统中读取出来。
转换:按照预先设计好的规则将抽取得数据进行转换、清洗,以及处理一些冗余、歧义的数据, 使本来异构的数据格式能统一起来。
装载:将转换完的数据按计划增量或全部的导入到数据仓库中。
在技术上主要涉及增量、转换、调度和监 控等几个方面的处理。

现在列举一个简单的实例,用来说明ETL。
如下表所示,是来自于四个地区的Item销售记录。四个地区依次是


图(3)

不管使用什么方法或工具,使上述四表的数据结构变成下表所描述的结构,并填充数据,这个过程就是一个ETL的过程。

 

图(4)

(3)DW, (Data Warehouse) 数据仓库的官方定义是一个面向主题的(Subject Oriented)、集成的(Integrate)、相对稳定的(Non-Volatile)、反映历史变化(Time Variant)的数据集合,用于支持管理决策。

数据仓库的特点:
1)、面向主题。
2)、集成。
3)、非易失。
4)、时间轴。

数据库与数据仓库的 区别如下所述:

 

 

图(5)

(4)OLAP,(On-Line Analytical Processing)即联机分析处理,是 BI的一种全新的数据封装方式,直接产物是报表或Cube,是使分析人员、管理人员或执行人员能够从多角度对信息进行快速、一致、交互地存取,从而获得对 数据的更深入了解的一类软件技术。

说到OLAP,不由的想起OLTP(联机事务处理系统),现在来比较一下OLTP与OLAP的区别,如下所述:

 

 

图(6)

 

太理论化的东西还是少说,来看看数据表中数据是如何在立方体中表示的。
单独察看一个Location的销售数据,使用惯用的2-D平面数据 表,完全可以满足所有的需求,如下图所示:

图(7)

但,要是想从更多的Location的角度去分析数据,可以在2-D的平面数据的基础上增加一个维,来表示Location的变化,如下图所示:

图(8)

概念上讲,也可以以3-D的数据立方体的形式表示这些数据,如下图所示:

 

图(9)

假定再增加一个维,用来表示制造商的变化,哪应该如何表示数据了呢?我们按照上面的思路,可以表示成如下图所示的数据结构,并称之为4-D立方体。

图(10)

以此类推,可以把N-D数据立方体表示为(N-1)-D数据立方体的序列。这是OLAP的基本原理,至于其中使用了何种具体的算法,来计算与管理每 个“子方体”的,内容太多,不能再这里啰嗦了...
说明:
数据立方本是对多维数据存储的一种比喻,这种数据的实际物理存储不同于它的逻辑 表示。它不限于3-D,而是N维的。

五、数据展现

数据查询是最简单的 BI 应用,输出报表是BI最直接的产物,根据数据连接,加工过程及用途,应用模式大致可以分为四种:格式报表;在线分析;数据可视化;数据挖掘。

1、格式报表:带格式的数据集合,如:交叉表等。

2、在线分析:多维数据集合,如:Cube等。

3、数据可视化:信息以尽可能多的形式展现出来,目的是使决策者通过图形这种直观的表现方式迅速获得信息中蕴藏的知识,如柱图,仪表盘等。

4、数据挖掘:从大量的数据中,抽取出潜在的、有价值的知识(模型或规则)的过程。分析方法:

· 分类 (Classification)

· 估值(Estimation)

· 预言(Prediction)

· 相关性分组或关联规则(Affinity grouping or association rules)

· 聚集(Clustering)

· 描述和可视化(Description and Visualization)

数据挖掘号称能通过历史数据的分析,预测客户的行为,而事实上,客户自己可能都不明确自己下一步要作什么。所以,数据挖掘的结果,没有人们想象中神 秘,它不可能是完全正确的。客户的行为是与社会环境相关连的,所以数据挖掘本身也受社会背景的影响。

六、常用的BI 厂商和产品

ETL:Informatica, SQL Server Analysis Server

DW:IBM DB2,Oracle,Sybase IQ,NCR Teradata 等等;

OLAP: Cognos,Business Objects,MicroStrategy,Hyperion,IBM

Data Mining:IBM,SAS,SPSS

现在很多的数据库提供商都开始绑定BI的开发组件到自己的数据库产品中,他们都瞄准了这其中的肥肉,磨拳檫掌,各论长短。

七、BI在中国

中国拥有5000年的文化史,灿烂的文件让日常报表也非常具有凝聚力,交错纵横,里外相嵌,格式诡异、规则古怪、数据集中而文名于世,让无数报表工 具折腰。BI概念是从欧美引进的,现有的工具也多是欧美国家提供,中国是世界上报表最复杂的国家,报表设计风格与这些国家有明显的差别,BI工具制作的报 表倾向于仅用一张报表说明一个问题,而中国的报表倾向于将尽可能多的问题集中在一张报表中,这种思路直接导致了BI工具应用难度的提升。

============================================================

第二种解释方法,

 

 

大家来说说,如何通俗地表述"BI"是什么?

昨天试图给一位非业内人士描述BI是什么,从报表讲到决策支持,完了看着对方,四目相对。发现自己说了一堆 废话,这难道不是很尴尬的事情吗?

因此,如何将BI、商务智能、数据仓库、挖掘这些听起来曲高和寡的名词,表述地让人更容易明白?还请大家伙 出出主意。

确实是啊,碰到不明白的怎么说都不清楚呀

如果是我遇到了,就不要再提什么BI阿,report阿

直接举个例子,如何快速的在一个堆满货物的仓库里找到自己想要的东西,而bi就是手电筒,呵呵

这种说法可以吗:企业里有大量的、分布于各个计算机系统的数据,把这些数据进行整理、分析,找到其中有价值 的信息,为企业的经营决策提供依据。

是指BI的定义吗:
 
“以实现价值成果为目标,对资源及其组织过程的智能化管理方法”

BI或者DW在业内现在尚无一个统一的精确的说法,就BI和DW本身也往往存在争论。
我的理 解,BI更多时候指的是前端应用部分,而DW更多时候指的是后端部分(包括架构体系的建立)。

目前也没有一个术语能够在完整的,准确的表达出从后端数据采集直至前端应用这么一个端到端的过程。

Inmon提出的CIF(企业信息工厂)倒是能够涵盖整个过程,然而这个概念似乎太大了一点(整个外部世界 都涉及在内,从而形成了一个“信息”生态系统)。
当然我们往往会将BI或者DW的范围进行扩大,而在与客户或者非业内人士沟通时候,我觉得可以根 据用户本身的类别(压根儿没听过BI/有一些了解/熟悉/专家级别)将 BI这个概念进行诠释。

譬如:对于一无所知的受众,那么我觉得举例子可能会更形象一些(下定义似乎不太现实),我经常就会根据用户 对相应行业的熟悉程度进行举例,例如,大部分人对零售都有一定了解,那么这个时候不妨举购物篮子分析说明BI的部分作用,进而说明BI可以从数据中发现知 识(KDD)等等。

如果受众对IT比较了解的话,我觉得不妨如下表述:

BI应该包括如下三个部分:

信息处理:支持查询和基本的统计分析(使 用交叉表,图表或者图进行报表的展示等);

分析处理:支持基本的OLAP操作(上钻,下钻,旋转,切片,切块等);

知识发现:支持数据挖掘,如:找出隐藏的模式和关联,进行分类和预测,构造分析模型以及数据可视化等

Tiger这个说法比较系统,可还是不够通俗啊。
 
这样说吧,如果家里的一位长辈,当然他 不懂IT,但也曾经管过人,也算有些管理经验吧,又特别关心你,想知道你究竟作什么,该如何向他描述呢?
 
最好就是一两句话。

纠正:

“以实现价值成果为目标,对资源及其组织过程的智能化信息管理方法,称为商业智能。
 
商业 智能系统应当包括:拥有接受新的对象的能力,拥有接受新的规则的能力,并使新规则作用于新对象的递归处理”
 
本人是头头脑脑的老朋友,欢 迎向大家学习和交流。

分析的工具与方法

业务系统解决饱暖的问题,“饱暖思淫欲”,BI就是解决这个问题

商业智能(Business Intelligence,简称BI)的概念最早是Gartner Group于1996年提出来的。当时将商业智能定义为一类由数据仓库(或数据集市)、查询报表、联机分析、数据挖掘、数据备份和恢复等部分组成的、以帮 助企业决策为目的技术及其应用。
BI在学术界基本上就是KDD(Knowledge Discovery in Database),不过BI的目标性更强,就是为了改善企业数据管理,数据分析及进一步帮助决策等商业行为.
 
一点意见,仅供参考.

呵呵,俺前两天恰好写了些东西,也正是关于这个的。难道真的和happy心有灵犀?好冷。。

bi是啥?

一提到bi(数据仓库)的概念(虽然不是一码事,但我们在现实中很多时候还是把他俩当作一回事在提),很多 人都愿以b.Immon的定义做开场白,这也难怪,恐怕我们从接触这玩意开始,看到的第一本比较系统的书就是这本了!我记得三四年前,我去一家公司面试, 面试官开场便问我这个问题(当然他是问数据仓库),当时我有些懵了,其实这本书我早看过,也安放在床头,有事无事翻翻。但有人突然让你给出个明确答案来, 还不是很容易说的很清楚。

那bi到底是个啥玩意呢?好吧,我们不偷换概念,先说数据仓库是个啥玩意吧!
数据仓库首先是个数据 库,这没错吧!因为它容量大,所以我们叫他“仓库”。还有一层意思:仓库中的东西就是因为其多,所以要码放整齐,该放哪的就放哪,最好还有一个清单记录一 下,以方便你使用时查找。所以我给数据仓库下的定义就是:存放整齐数据的有清单索引的数据库。也就是说,它是有三部分组成的:数据库(dbms)、数据 (data)、索引(index)。前两项都不难理解,第三项“索引”我们更常把它叫做“元数据”。有了这三样宝贝,就成就了我们“前景广阔”的数据仓 库。

可是,在现实的工程项目建设中,我们往往把注意力放在前面两个部分的构架上,而对于元数据部分不太重视,或 者说根本就当作是聋子的耳朵。但恰恰是这个聋子的耳朵,在工程中成了制约我们系统推广应用的一个绊脚石。且不说对使用者,面对庞大的仓库不知如何下手,我 敢说在开发人员中,能对系统数据100%的了解的也不多,更多的情况是:你现在要查某个数据,却不知从哪里查,于是问问这个,问问那个,然后自己再 select * from XXXX表看一下到底有没有我们需要的字段。反映到使用者的现实情况是,这么多报表、cube、kpi、专题等等东西,到底我要的数据在哪里?晕!心里早 早打退堂鼓,哪里还有兴趣搞什么分析。到最后开发人员说我们花了大力气做的东西没人用,使用者说我们不知如何用。究其原因还是缺少对系统数据给出索引的元 数据管理。有了元数据,我们再基于它做一个界面友好的查询工具——不知道大家用过go2map没有,输入起点和终点,系统会给出几条备选的行车路线,对, 我说的查询工具就是这个玩意——啊,这个世界清晰了。

bi呢,是基于数据仓库的统计分析系统。

为啥非要是以数据仓库为基础呢?很简单,因为数据仓库够大、够清楚、够全面,对统计分析需要的数据源支持的 够好!

统计、分析,没错,两个方面。一说bi,大家都爱往分析上靠,觉得这样比较高深,同时分析需要的中间结果往 往没有一个可参照的标准结果,因此常常看不出有何不妥。一说到统计,完了,不就是报表吗(因为bi系统后建的缘故,很多原来的业务系统有的报表还要在bi 系统中再集中做一遍),还要对数据,——人世间最痛苦的事莫过于此——真是头疼呀。头疼也没办法,我个人认为很长一段时间内,统计还是bi的重点,象有些 人说的这和业务习惯呀、人员水平呀都是分不开的。那是不是需要数据都精准到和业务系统报表一样呢,这里争议很多,大多数的观点是允许有误差,说白了就是允 许有差错,只要维持在小范围(这个范围就看你怎么和甲方交涉了)内,都是可以接受的。虽然我很不情愿,但还是要说,这种差别不应该存在,在条件、规则一致 的情况下,bi系统的统计结果是要和业务系统的无二样的(只有一种可以例外,那就是“时点数”的情况)。说什么经过数据清洗、转换难免不准,这些都是托 词,不管数据在系统内经过的步骤有多少,最终结果的不一致说明你在中间的某个环节出了问题。同时bi系统还有一个很神圣的使命,规范统计口径,保证系统里 的两个地方出现的结果都正确统一。而现实中,恰恰是上面两个问题成了bi的致命伤:数据不准、结果不统一,这种情况导致的后果就是使用者对系统的准确性抱 怀疑态度而远之。

说到分析,我想还是需要给他再划个范围:我所说的分析是以事实为依据的决策辅助分析,而不是直接呈现分析结 果的决策过程。大家都喜欢拿啤酒和尿布来做经典案例,这总给人一种误区,似乎bi就是算命先生,预知未来,能取代人的思维,直接给你答案。其实不用我解释 大家都知道这是不可能的。

说了这么多,bi其实就是:以数据仓库为基础的业务和决策支持系统。

要想通俗的话,似乎就不能称之为定义,定义应该是严谨的、准确的、经得起推敲的。
但如果仅仅是为了 表达BI,我觉得是不是可以这么陈述:所谓BI,就是指帮助企业实现“数据 –〉信息 –〉知识 –〉行动”过程所运用的技术和方法。
当然,关于 BI的定义,似乎各个大的权威机构也都有自己的一套说法,详细的描述请看 博客园-蜡人张,摘录如下:

Gartner Group认为:商业智能技术提供使企业迅速分析数据的技术和方法,包括收集、管理和分析数据,将这些数据转化为有用的信息,然后分发到企业各处,辅助商 业决策的制定。

IDC将 BI定义为:终端用户查询和报告工具、OLAP工具、数据挖掘软件、数据集市和数据仓库产品等软件工具的集合。

IBM 认为:商业智能是一系列由系统和技术支持的以简化信息收集、分析的策略的集合,它应该包括企业需要收集什么信息、谁需要去访问这些数据、如何把原始数据转 化为最终导致战略性决策的智能、客户服务和供应链管理。

Microsoft认为:商业智能是任何尝试获取、分析企业 数据以更清楚地了解市场和客户、改进企业流程、更有效地参与竞争的努力。

SAP认为:商业智能是一大类收集、存储、 分析和访问数据以帮助企业用户更好进行决策的应用程序与技术。

SAS认为:商业智能是关于在组织内部和组织周围正在 发生的智能或知识。

MSTR认为:商业智能是一系列能够使公司分析数据库中的数据并根据收集的信息获得的洞察力来做 决策的软件系统。
 
DWReview认为:从数据分析的观点,商业智能是收集与研究主题相关的、高质量的、有意义的信 息、以帮助分析信息、得出结论或做出假设的过程。
       … …
 
这位蜡人张真是位有心人,找出这么多的定义。
 
如 果将这些定义中一些定语刨去,由实到虚,大致分成四类,挺有意思:

1、是工具和技术集合,Gartner、IDC、IBM、SAP、MSTR代表的;

2、是过程,DMReview的定义;

3、是智能和知识,SAS倡导的;

4、是努力,MS主张的。

这个是不是通俗易懂点:商业智能,数据海洋中的指南针

这两天发起的关于如何通俗描述BI的话题得到各种回复,因此想找个人练练。正好有个朋友,做贸易的,不懂 BI,于是拿了他做靶子。

先说"BI就是对一堆历史数据分析分析,发现一些规律",反映还是有点抽象。最后形成一句,"从历史数据中 提取信息,搞清楚经营状况"。

形成这句总结语的过程中,还是穿插了贴近听者业务领域的例子。原来想用一两句话就能够将BI表达清楚,可能 本身就是不现实的。然而不同听众所在行业不同,是否要提前预习对方的业务才能清楚表述呢?恐怕也有些捷径。

分析一下上面这句表述方式,"搞清楚经营状况"是比较通用的,也就是比较抽象的。因此,就可以在这个术语上 深入一些,提出贴近业务的问题来引导听者对概念的理解。例如一般业务中都会有客户、销售订单、地区的概念,可以问出如下的问题:

"你知道你们的客户有多少,分布在那些地区,都是什么类型的吗?";

"你知道你们的订单都分布在那些地区,主要由那些客户供给的,以及数量趋势是什么样的吗?";

这样可以形成一种通用的,没有什么业务差别的问句。如果有必要,可以将客户、订单换成对方更容易接受的术 语。

如果按照一般BI的定义,这种表述显然很片面,但比较具体了。至于什么多维分析、挖掘,什么分析融入到操作 流程中去,过早提出来恐怕只能让听众更加晕乎。
 
因此,我想如果想通俗地表述BI是什么,并非用严格的定义,而是要告知BI能够解决业务 里面的哪些问题。

看过苏菲的世界吧?那本书里有答案。

BI是神圣的,他的光辉照耀了企业经营所有的地方,企业本身的经营就是BI他无处不在,一旦理解和相信了 BI的存在你就能够在更高的世界层面看问题,从而解决信仰的危机。

玩笑了。

我以前和客户解释什么是BI的时候一般是用下面的:

BI就是收集和集中企业和客户相关经营信息并加以分析,以帮助您做决策。成功的BI系统多采用了数据仓库技 术。

这样即照顾了迷糊的听众也为后面对技术狂热者的讨论确立范围。
 
然后就听到最经典的回答: 你们是作报表的吧!

本来呢,我这个人不是很爱凑热闹,可是频频收到来自ttnn的邮件,研讨什么是bi……
这年头的确 开放哈?啥都有人讨论……实在不堪骚扰,忍不住站出来说两句。

说个场景,一天去街上买烤白薯,和老板那银聊天。

银:“你娃干哈地呀?”

俺:“做软件的。”

银:“啥子软件?”

俺:“bi”

银:“啥东西??”

俺:“哦,就比如说你天天在街上卖烤白薯,天天有人买,可是你希望生意能再好一点,我就把你过去两年卖白薯 的记录都拿出来,拿俺们的软件分析分析,就能告诉你,这疙瘩都啥样银喜欢七烤白薯,啥样白薯受欢迎,多大个的白薯涨点价还能卖得好,预测一下你下礼拜大概 还能卖多少白薯……”

俺:“……俺们软件大概就是这东西吧”

银:“哦……俺明白了”

此时银的神情就有如听到了,“No,No,这不是路易十三,是清道光二五”一样,现出迷茫的目光和明白的笑 容,头还一上一下地晃荡着 ……

银:“你娃做bi的喽?”

俺:“No,No,俺没恁高层次,俺只是卖bi的……”

这年头的确啥银都有,作啥地都有,还有人作甚么鼻...鼻癌地……实在看不下去了,忍不住说说这个事。

话说那天我在街头摆着俺的烤白薯摊子,你说俺都摆了二十几年的摊儿了,没见过这样的银,走过来不买俺的 白薯,非得瞪着我,给他盯的不好意思叻,就问了一声。

俺:"你娃干哈地呀?"

银:"做软件的。"

俺:"啥子软煎?"

银:"鼻癌"

俺:"啥东西??"

银:"哦,就比如说你天天在街上卖烤白薯,天天有人买,可是你希望生意能再好一点,我就把你过去两年卖白薯 的记录都拿出来,拿俺们的软件分析分析,就能告诉你,这疙瘩都啥样银喜欢七烤白薯,啥样白薯受欢迎,多大个的白薯涨点价还能卖得好,预测一下你下礼拜大概 还能卖多少白薯……"

银:"……俺们软件大概就是这东西吧"

俺:"哦……俺明白了"(俺心想,坏叻坏叻,今天碰到神经病叻!)
那银的模样是得意洋洋,两只眼睛 珠子忽闪忽闪地,一只冒出十三...点,一只是二百...五的字样,还摇头晃脑地……

银:"你娃做鼻癌的喽?"(俺当时心里那个抖啊,腿也在抖)

俺:"漏,漏,俺没恁高层次,俺只是卖鼻癌地……"

俺地娘唉,摊子俺也不要叻,赶紧开溜吧。

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页