模糊集理论最先对模糊和不确定问题采取理论进行处理,后来,提出建立了一个使用模糊概念和不确定进行推理的理论新框架——粗糙集理论。粗糙集理论基于论语中元素的某一信息或知识在最开始是可获得的这一假设,可获得的关于元素的信息被用于发现相似的元素和难以辨别的元素。
粗糙集基于集合的上相似和下相似的概念。上相似封装了隶属度不确定的元素,下相似包含完全确定属于该集合的元素。上相似与下相似之差被称为一个集合的边界区域,包含了不能基于可获得的信息被分类的所有样本。
粗糙集已经被证明在决策支持、机器学习、信息检索和数据挖掘等多个应用领域都是有成效的。粗糙集对噪声环境和数据不完备的情形具备健壮性。
1 辨别力的概念
针对决策系统来讨论模糊集。一个决策系统是一个信息系统,其属性被分组成不相交的条件属性集合和决策属性集合(条件属性表示了输入的参数,决策属性表示了类别)。
粗糙集的基本思想是物体之间的辨别力。如果两个对象在一组属性上是不可辨别的,则意味着对象在这些属性上的值是相同的。正式的,不可辨别关系被定义为:
2 粗糙集中的模糊
模糊集中的模糊是相对于概念而言的,它基于边界的定义。边界区域是上相似与下相似之差,下相似被记为BX,上相似记为。如果边界区域是空集,则说明X对于B是明确的,否则是模糊的。因此模糊集可以被视为模糊概念的一个数学模型,模糊可以被定义为下相似与上相似之商,取值在[0,1],如果值为1,则集合X是明确的,否则X是粗糙的。
3 模糊集中的不确定性
一个模糊概念具有一个非空边界区域,其中区域中的元素并不能准确的分类到概念中的一员,通过一个与每一个元素都具有一个相关联隶属度的粗糙隶属函数来表示确定性(或者说不确定性)。
[仅仅了解了一个皮毛,以后有需要再继续学习]