【数字逻辑】学习笔记 第五章 时序逻辑电路(概述和集成触发器)

文章目录

一、时序逻辑电路概述

1. 基本概念和核心部件

  • 基本概念:具有记忆功能的电路
  • 触发器 : 能记忆 1 1 1 位二进制数的电路

本章我们重点关注:

  • 时序逻辑电路的分析与设计的方法
  • 实际应用:计数器与寄存器

2. 时序逻辑电路的特点

数字逻辑电路分为:组合逻辑电路和时序逻辑电路

  • 组合逻辑电路的特点:输出随当前输入变化
  • 时序逻辑电路的特点:
    功能:任何时刻的稳定输出,不仅与 该时刻 的输入有关,还与电路 原状态 有关,即与以前的输入有关
    结构: 由 组合电路存储电路 组成

时序电路一般结构:

3. 时序逻辑电路的分类

按有无统一时钟脉冲分:

  • 同步: 有统一的时钟 CP ,状态变更CP 同步
  • 异步: 无统一 CP ,状态变更不同步,逐级进行

按输出信号特点分:

  • 米里型(Mealy): 输出信号不仅与存储状态有关,还与外部输入有关
  • 莫尔型(Moore): 输出信号仅与存储状态有关(外部输入改变存储状态,从而改变输出)

二、集成触发器介绍

1. 触发器概述

数字电路对二进制信号的处理无非是数值运算和逻辑运算,加上存储。数值逻辑运算电路的设计属于组合电路,而存储则属于时序电路。

能够存储 1 1 1 位二值信号的基本单元电路统称为触发器(Flip-Flop),简称 FF ,又称为双稳态触发器。

触发器是构成时序逻辑电路的基本单元电路

2. 触发器的特点

  • 两个稳定状态(简称稳态),用来表示逻辑 0 0 0 1 1 1,一个触发器可存储 1 1 1 位二进制数码
  • 在输入信号作用下,触发器的两个稳定状态可相互转换(称为状态的翻转)
  • 输入信号作用后,新状态可长期保持下来,电路具有记忆功能

触发器的现态和次态

  • 现态 (现在状态):输入变化前,触发器所处的状态
  • 次态 (下一状态):输入变化后,触发器进入的状态(次态是对某一时刻而言,过了该时刻就应看作现态)

3. 触发器的分类

  • 按逻辑功能分:R-S 触发器、D 型触发器、J-K 触发器、T 型触发器等;
  • 按触发方式分: 电平触发方式、脉冲触发方式和边沿触发方式

4. 触发器逻辑功能的描述方式

状态转移真值表(功能表)、特征方程、激励表、状态转换图、波形图(时序图)等


三、集成触发器

1. 基本 R-S 触发器

基本R-S触发器,又叫SR锁存器,是构成各种触发器的基本部件,也是最简单的一种触发器

锁存器——不需要触发信号,由输入信号直接完成置 0 0 0 或置 1 1 1 操作。
触发器——需要一个触发信号 ,称为时钟信号 CLOCK ,只有触发信号有效时,才按输入信号完成置 0 0 0 或置 1 1 1 操作。

(1) 电路结构

基本R-S触发器有两个输入端、两个输出端、两条反馈电路:

反馈:正是由于引入反馈,才使电路具有记忆功能!

R-S触发器的状态:(输出 Q Q Q Q ‾ \overline Q Q 互为相反逻辑,方便工作原理的分析)

  • 0 0 0 态: Q = 0 , Q ‾ = 1 Q=0,\overline Q=1 Q=0,Q=1
  • 1 1 1 态: Q = 1 , Q ‾ = 0 Q=1, \overline Q=0 Q=1,Q=0
R D ‾ \overline {R_D} RD S D ‾ \overline {S_D} SD
0 0
1 1
1 0
0 1

(2) 工作原理

输入 R D ‾ = 0 , S D ‾ = 1 \overline{R_D} = 0, \overline {S_D}= 1 RD=0,SD=1 时,置 0 0 0

每次先从为 0 0 0 的输出端开始分析:

输入 R D ‾ = 1 , S D ‾ = 0 \overline{R_D} =1, \overline {S_D}= 0 RD=1,SD=0 时,置 1 1 1
输入 R D ‾ = 1 , S D ‾ = 1 \overline{R_D} =1, \overline {S_D}= 1 RD=1,SD=1 时,保持
输入 R D ‾ = 0 , S D ‾ = 0 \overline{R_D} =0, \overline {S_D}= 0 RD=0,SD=0 时,保持

注意:当两个输入端由 0 0 0 变为 1 1 1 时,翻转快的门输出变为 0 0 0 ,另一个不得翻转。因此,该状态为不定状态。

(3) 逻辑功能的描述

a. 状态转移真值表(功能表)

基本R-S触发器的状态转移真值表——反映触发器状态变化与输入之间的关系

基本R-S触发器的简化功能表

b. 特征方程——用逻辑函数描述触发器的功能

基本R-S触发器状态转移表

{ Q n + 1 = S D + R D ‾ Q n S D ‾ + R D ‾ = 1 \left\{ \begin{aligned} Q^{n+1} &= S_D + \overline {R_D}Q^n\\ \overline {S_D} +\overline {R_D} &= 1 \end{aligned} \right. { Qn+1SD+RD=SD+RDQn=1
约束条件: S D ‾ , R D ‾ \overline {S_D},\overline {R_D} SD,RD 不能同时为零。

c. 状态转移图——用图形来描述触发器的功能

基本R-S触发器的状态转移图

d. 激励表 —— 是状态转移图的表格表达方式

基本R-S触发器的激励表:
激励表描述触发器由现态 Q n Q^n Qn 转移到次态 Q n + 1 Q^{n+1} Qn+1 时对输入控制信号的要求:

e. 波形图 —— 输出信号波形随输入信号发生变化

假设初始状态为 0 0 0

(4) 特点

由于基本R-S触发器的状态由输入信号直接控制,以及存在约束条件,其在应用方面存在很大的局限性和不便

直接控制:输入信号直接加在输出门上,在输入信号全部作用时间内,都能直接改变输出端的状态,即只要有输入信号,就能作用于电路


2. 电平触发的触发器

在数字系统中, 为协调各部分的动作, 常常要求某些触发器在 同一时刻 动作(即改变状态,也称为翻转)。 这就要求有一个同步信号来控制,这个控制信号叫做 时钟脉冲信号(Clock Pulse,CP),Clock Pulse 是一串周期性的矩形脉冲。

具有时钟脉冲控制的触发器统称为 时钟触发器 ,又称 钟控触发器 。电平触发器(也称同步触发器)是其中最简单的一种。

(1) 钟控 R-S 触发器

a. 电路结构
b. 工作原理

C P = 0 CP=0 CP=0 时,触发器保持原态,G3 门和 G4 门的输出被锁定为 1 1 1基本R-S触发器状态保持不变触发器保持原态

C P = 1 CP=1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

memcpy0

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值