本文属于「离散数学」系列文章之一。这一系列着重于离散数学的学习和应用。由于内容随时可能发生更新变动,欢迎关注和收藏离散数学系列文章汇总目录一文以作备忘。此外,在本系列学习文章中,为了透彻理解数学知识,本人参考了诸多博客、教程、文档、书籍等资料。以下是本文的不完全参考目录,在后续学习中还会逐渐补充:
- (国外经典教材)离散数学及其应用 第七版
Discrete Mathematics and Its Applications 7th
,作者是Kenneth H.Rosen
,袁崇义译,机械工业出版社- 离散数学 第二版,武波等编著,西安电子科技大学出版社,2006年
- 离散数学 第三版,方世昌等编著,西安电子科技大学出版社,2013年
- (经典参考书及其题解)离散数学/离散数学——理论•分析•题解,左孝凌、李为鉴、刘永才编著,上海科学技术文献出版社
- 离散数学习题集:数理逻辑与集合论分册,耿素云;图论分册,耿素云;抽象代数分册, 张立昂。北京大学出版社
文章目录
6. 二元关系
6.1 二元关系的定义
6.2 二元关系的表示
6.3 二元关系的运算及性质
6.3.1 二元关系的集合运算
由于二元关系是以序偶为元素组成的集合,因此所有的集合运算对于二元关系同样适用。设 R , S R, S R,S 都是集合 A A A 到 B B B 的二元关系,则有:
(1) R ∪ S = { ⟨ x , y ⟩ ∣ ( x R y ) ∨ ( x S y ) } R \cup S = \{ \lang x, y\rang \ | \ (xRy) \lor (xSy) \} R∪S={
⟨x,y⟩ ∣ (xRy)∨(xSy)}
(2) R ∩ S = { ⟨ x , y ⟩ ∣ ( x R y ) ∧ ( x S y ) } R\cap S = \{ \lang x, y\rang \ |\ (xRy) \land (xSy) \} R∩S={
⟨x,y⟩ ∣ (xRy)∧(xSy)}
(3) R − S = { ⟨ x , y ⟩ ∣ ( x R y ) ∧ ( x S y ) } R - S = \{ \lang x, y \rang \ | \ (x R y) \land (x\cancel{S} y)\} R−S={
⟨x,y⟩ ∣ (xRy)∧(xS
y)}
(4) R ‾ = { ⟨ x , y ⟩ ∣ x R y } = A × B − R \overline R = \{ \lang x, y\rang \ |\ x \cancel{R} y\} = A \times B - R R={
⟨x,y⟩ ∣ xR
y}=A×B−R
(5) R ⊕ S = ( R − S ) ∪ ( S − R ) R \oplus S = (R - S) \cup (S - R) R⊕S=(R−S)∪(S−R)
例5 设 A = { 4 , 6 , 9 , 10 } A = \{4, 6, 9, 10\} A={ 4,6,9,10} ,