【离散数学】集合论 第三章 集合与关系(6) 二元关系的定义、表示和运算及性质

本文属于「离散数学」系列文章之一。这一系列着重于离散数学的学习和应用。由于内容随时可能发生更新变动,欢迎关注和收藏离散数学系列文章汇总目录一文以作备忘。此外,在本系列学习文章中,为了透彻理解数学知识,本人参考了诸多博客、教程、文档、书籍等资料。以下是本文的不完全参考目录,在后续学习中还会逐渐补充:

  • 国外经典教材)离散数学及其应用 第七版 Discrete Mathematics and Its Applications 7th ,作者是 Kenneth H.Rosen ,袁崇义译,机械工业出版社
  • 离散数学 第二版,武波等编著,西安电子科技大学出版社,2006年
  • 离散数学 第三版,方世昌等编著,西安电子科技大学出版社,2013年
  • (经典参考书及其题解)离散数学/离散数学——理论•分析•题解,左孝凌、李为鉴、刘永才编著,上海科学技术文献出版社
  • 离散数学习题集:数理逻辑与集合论分册,耿素云;图论分册,耿素云;抽象代数分册, 张立昂。北京大学出版社


6. 二元关系

6.1 二元关系的定义

6.2 二元关系的表示

6.3 二元关系的运算及性质

6.3.1 二元关系的集合运算

由于二元关系是以序偶为元素组成的集合,因此所有的集合运算对于二元关系同样适用。设 R , S R, S R,S 都是集合 A A A B B B 的二元关系,则有:
(1) R ∪ S = { ⟨ x , y ⟩   ∣   ( x R y ) ∨ ( x S y ) } R \cup S = \{ \lang x, y\rang \ | \ (xRy) \lor (xSy) \} RS={ x,y  (xRy)(xSy)}
(2) R ∩ S = { ⟨ x , y ⟩   ∣   ( x R y ) ∧ ( x S y ) } R\cap S = \{ \lang x, y\rang \ |\ (xRy) \land (xSy) \} RS={ x,y  (xRy)(xSy)}
(3) R − S = { ⟨ x , y ⟩   ∣   ( x R y ) ∧ ( x S y ) } R - S = \{ \lang x, y \rang \ | \ (x R y) \land (x\cancel{S} y)\} RS={ x,y  (xRy)(xS y)}
(4) R ‾ = { ⟨ x , y ⟩   ∣   x R y } = A × B − R \overline R = \{ \lang x, y\rang \ |\ x \cancel{R} y\} = A \times B - R R={ x,y  xR y}=A×BR
(5) R ⊕ S = ( R − S ) ∪ ( S − R ) R \oplus S = (R - S) \cup (S - R) RS=(RS)(SR)

例5 设 A = { 4 , 6 , 9 , 10 } A = \{4, 6, 9, 10\} A={ 4,6,9,10}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

memcpy0

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值