本文属于「离散数学」系列文章之一。这一系列着重于离散数学的学习和应用。由于内容随时可能发生更新变动,欢迎关注和收藏离散数学系列文章汇总目录一文以作备忘。此外,在本系列学习文章中,为了透彻理解数学知识,本人参考了诸多博客、教程、文档、书籍等资料。以下是本文的不完全参考目录,在后续学习中还会逐渐补充:
- (国外经典教材)离散数学及其应用 第七版
Discrete Mathematics and Its Applications 7th
,作者是Kenneth H.Rosen
,袁崇义译,机械工业出版社- 离散数学 第二版,武波等编著,西安电子科技大学出版社,2006年
- 离散数学 第三版,方世昌等编著,西安电子科技大学出版社,2013年
- (经典参考书及其题解)离散数学/离散数学——理论•分析•题解,左孝凌、李为鉴、刘永才编著,上海科学技术文献出版社
- 离散数学习题集:数理逻辑与集合论分册,耿素云;图论分册,耿素云;抽象代数分册, 张立昂。北京大学出版社
4.1 函数
高等数学中从变量的角度提出了函数的概念,而且是在实数集合上讨论函数,这种函数一般是连续或间断连续的。现在,我们将连续函数的概念,推广到离散变量上,即将函数看作一种特殊的二元关系。这时,我们之前讨论的有关集合或关系的运算和性质,也完全适用于函数。
函数的概念,在日常生活和计算机科学中都非常重要,各种高级编程语言中大量使用函数,而计算机的任何输出,都可看做是某个函数作用于某些输入上的结果。
4.1.1 函数的定义
定义4.1.1 设 X X X 和 Y Y Y 是集合, f f f 是从 X X X 到 Y Y Y 上的二元关系,如果对于每个 x ∈ X x \in X x∈X 都有唯一的 y ∈ Y y \in Y y∈Y ,使得 ⟨ x , y ⟩ ∈ f \langle x, y\rangle \in f ⟨x,y⟩∈f ,则称 f f f 为从 X X X 到 Y Y Y 的函数 a function from X to Y
,记为 f : X → Y f: X \to Y f:X→Y 。函数的形式化定义为:
f : X → Y ⇔ ∀ x ( x ∈ X → ∃ y ( y ∈ Y ∧ ⟨ x , y ⟩ ∈ f ∧ ∀ z ( z ∈ Y ∧ ⟨ x , z ⟩ ∈ f → y = z ) ) ) f: X \to Y \Lrarr \forall x(x \in X \to \exist y(y \in Y \land \langle x, y\rangle \in f \land \forall z (z \in Y \land \langle x, z \rangle \in f \to y = z))) f:X→Y⇔∀x(x∈X→∃y(y∈Y∧⟨x,y⟩∈f∧∀z(z∈Y∧⟨x,z⟩∈f→y=z)))
函数又称作映射 mapping
或变换 transformation
。
定义4.1.2 设 f f f 为从集合 X X X 到 Y Y Y 的函数,任取 x ∈ X x \in X x∈X ,若 ⟨ x , y ⟩ ∈ f \langle x, y\rangle \in f ⟨x,y⟩∈f ,则称 y y y 为在 f f f 下 x x x 的函数值 value
或像 image
,记为 f ( x ) = y f(x) = y f(x)=y ,而 x x x 则称为 y y y 的原像 preimage
。若 X ′ ⊆ X X' \subseteq X X′⊆X ,称 f ( X ′ ) = { f ( x ) ∣ x ∈ X ′ } f(X') = \{ f(x) \mid x \in X'\} f(X′)={
f(x)∣x∈X′} 为函数 f f f 下 X ′ X' X′ 的像。特别地,称整个前域 X X X 的像 f ( X ) f(X) f(X) 为函数的值域。
设 f f f 为从集合 X X X 到 Y Y Y 的函数,下图描述了函数 f f f 的基本特征。其中函数 f f f 的前域 X X X 为集合 X X X ,陪域为集合 Y Y Y ,函数 f f f 的定义域 dom f = X \textrm{dom} f = X domf=X ,值域 ran f = f ( X ) = { f ( x ) ∣ x ∈ X } \textrm{ran} f = f(X) = \{ f(x) \mid x \in X\} ranf=f(X)={
f(x)∣x∈X} ,显然有 ran f ⊆ f \textrm{ran} f \subseteq f ranf⊆f 。
X X X 到 Y Y Y 的函数实质上是一个从 X X X 到 Y Y Y 的二元关系,反过来则不一定,从 X X X 到 Y Y Y 的二元关系不一定是 X X X 到 Y Y Y 的函数。区别于一般二元关系,函数有以下两个特征:
- (点点有定义)函数 f f f 的定义域 dom f = X \textrm{dom}f = X domf=X (即函数的定义域是 X X X ,而不能是 X X X 的某个真子集);
- (值唯一性/单值性)对于每个 x ∈ X x \in X x∈X ,在 Y Y Y 中有且仅有唯一的一个元素 y y y ,满足 ⟨ x , y ⟩ ∈ f \langle x, y \rangle \in f ⟨x,y⟩∈f ,即对 y 1 , y 2 ∈ Y y_1, y_2 \in Y y1,y2∈Y ,有
f ( x ) = y 1 ∧ f ( x ) = y 2 ⇒ y 1 = y 2 f(x) = y_1 \land f(x) = y_2 \Rarr y_1 = y_2 f(x)=y1∧f(x)=y2⇒y1=y2
一个关于某个具体函数的描述,如果满足函数的定义,则称这个函数描述是良定义的 well defined
。
【例1】判断下图所示的四个关系中,哪些能构成函数。
解:(a)不是函数,因为 x 2 x_2 x2 没有像;(b)也不是函数,因为 x 2 x_2 x2 有两个像;其他两个都是函数。
【例2】判断下列关系中,哪些能构成函数。
(1) f f f 是 N \N N 上的二元关系,且 f = { ⟨ x 1 , x 2 ⟩ ∣ x 1 , x 2 ∈ N , x 1 + x 2 < 10 } f = \{ \langle x_1, x_2 \rangle \mid x_1, x_2 \in \N,\ x_1 + x_2 < 10\} f={
⟨x1,x2⟩∣x1,x2∈N, x1+x2<10}
(2) f f f 是 R \R R 上的二元关系,且 f = { ⟨ y 1 , y 2 ⟩ ∣ y 1 , y 2 ∈ R , y 2 2 = y 1 } f = \{ \langle y_1, y_2 \rangle \mid y_1, y_2 \in \R,\ y_2^2 = y_1 \} f={
⟨y1,y2⟩∣y1,y2∈R, y22=y1}
(3) f f f 是 N \N