tensorflow对pd文件的保存和加载

代码只是一份笔记,以免以后忘记了

import tensorflow as tf

from tensorflow.python.framework import graph_util

var1 = tf.Variable(1.0, dtype=tf.float32, name='v1')

var2 = tf.Variable(2.0, dtype=tf.float32, name='v2')

var3 = tf.Variable(2.0, dtype=tf.float32, name='v3')

x = tf.placeholder(dtype=tf.float32, shape=None, name='x')

x2 = tf.placeholder(dtype=tf.float32, shape=None, name='x2')

addop = tf.add(x, x2, name='add')

addop2 = tf.add(var1, var2, name='add2')

addop3 = tf.add(var3, var2, name='add3')

initop = tf.global_variables_initializer()

model_path = './Test/model2.pb'

with tf.Session() as sess:

    sess.run(initop)

    print(sess.run(addop, feed_dict={x: 12, x2: 23}))  # 35

    output_graph_def = graph_util.convert_variables_to_constants(sess, sess.graph_def, ['add', 'add2', 'add3'])

    # 将计算图写入到模型文件中
    with tf.gfile.FastGFile(model_path, mode="wb") as f:
        f.write(output_graph_def.SerializeToString())

重新加载模型图和模型参量

import tensorflow as tf

with tf.Session() as sess:

    model_f = tf.gfile.FastGFile("./Test/model.pb", mode='rb')

    graph_def = tf.GraphDef()

    graph_def.ParseFromString(model_f.read())

    c = tf.import_graph_def(graph_def, return_elements=["add2:0"])

    c2 = tf.import_graph_def(graph_def, return_elements=["add3:0"])

    x, x2, c3 = tf.import_graph_def(graph_def, return_elements=["x:0", "x2:0", "add:0"])


    print(sess.run(c))
    print(sess.run(c2))
    print(sess.run(c3, feed_dict={x: 23, x2: 2}))
TensorFlow中处理西储大学轴承数据并将其打标签通常涉及以下步骤: 1. **数据加载和预处理**: - 下载轴承数据集,它通常包含特征数据(如振动信号)和对应的类别标签。 - 使用`pandas`库读取CSV文件,如果数据是以CSV格式存储的话。 ```python import pandas as pd data = pd.read_csv('bearings_data.csv') # 假设文件名是bearings_data.csv ``` 2. **特征工程**: - 对数据进行清洗,填充缺失值,转换为数值型,如果需要标准化或归一化,可以使用`sklearn.preprocessing`模块。 3. **划分训练集和测试集**: ```python from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(data.drop('label_column', axis=1), data['label_column'], test_size=0.2, random_state=42) ``` 这里假设'label_column'是包含标签的列名。 4. **创建标签文件**: 将训练集和测试集的标签分别保存到CSV文件中,例如: ```python y_train.to_csv('train_labels.csv', index=False) y_test.to_csv('test_labels.csv', index=False) ``` `index=False`是为了不把行索引写入文件。 5. **构建模型**: 使用TensorFlow库创建模型,然后对训练数据进行训练。 6. **评估与预测**: 训练完成后,你可以用模型对测试集进行预测,并将结果保存为另一个.csv文件,例如对于测试集: ```python predictions = model.predict(X_test) predicted_labels = [np.argmax(prediction) for prediction in predictions] submission = pd.DataFrame({'ID': X_test.index, 'PredictedLabel': predicted_labels}) submission.to_csv('submission.csv', index=False) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值