dijkstra(迪杰克标题斯拉算法)
概述
迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法。是从一个顶点到其余各顶点的最短路径算法,解决的是有权图中最短路径问题。迪杰斯特拉算法主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。迪杰斯特拉算法采用的是贪心策略,将Graph中的节点集分为最短路径计算完成的节点集S和未计算完成的节点集T,每次将从T中挑选V0->Vt最小的节点Vt加入S,并更新V0经由Vt到T中剩余节点的更短距离,直到T中的节点全部加入S中,它贪心就贪心在每次都选择一个距离源点最近的节点加入最短路径节点集合。迪杰斯特拉算法只支持非负权图,它计算的是单源最短路径,即单个源点到剩余节点的最短路径,时间复杂度为O(n²)。
dijkstar算法的核心思想是通过bfs加贪心策略
代码实现
package Algorithm.dijkstra;
import java.util.Arrays;
import java.util.Scanner;
public class DijkstraAlgorithm {
//不能设置为Integer.MAX_VALUE,否则两个Integer.MAX_VALUE相加会溢出导致出现负权
public static int MaxValue = 100000;
public static void main(String[] args) {
int[][] matrix = new int[7][7];
for (int[] row : matrix) {
Arrays.fill(row, MaxValue);
}
matrix[0][1] = 6;
matrix[0][3] = 2;
matrix[1][2] = 5;
matrix[1][5] = 3;
matrix[3][4] = 5;
matrix[3][1] = 7;
matrix[4][5] = 5;
matrix[4][6] = 1;
matrix[5][2] = 7;
//调用dijstra算法计算最短路径
Dijkstra(matrix, 0);
}
public static void Dijkstra(int[][] matrix, int source) {
//最短路径长度
int[] shortest = new int[matrix.length];
//判断该点的最短路径是否求出
int[] visited = new int[matrix.length];
//存储输出路径
String[] path = new String[matrix.length];
//初始化输出路径
for (int i = 0; i < matrix.length; i++) {
path[i] = source + "->" + i;
}
//初始化源节点
shortest[source] = 0;
visited[source] = 1;
for (int i = 1; i < matrix.length; i++) {
int min = Integer.MAX_VALUE;
int index = -1;
for (int j = 0; j < matrix.length; j++) {
//已经求出最短路径的节点不需要再加入计算并判断加入节点后是否存在更短路径
if (visited[j] == 0 && matrix[source][j] < min) {
min = matrix[source][j];
index = j;
}
}
//更新最短路径
shortest[index] = min;
visited[index] = 1;
//更新从index跳到其它节点的较短路径
for (int m = 0; m < matrix.length; m++) {
if (visited[m] == 0 && matrix[source][index] + matrix[index][m] < matrix[source][m]) {
matrix[source][m] = matrix[source][index] + matrix[index][m];
path[m] = path[index] + "->" + m;
}
}
}
//打印最短路径
for (int i = 0; i < matrix.length; i++) {
if (i != source) {
if (shortest[i] == MaxValue) {
System.out.println(source + "到" + i + "不可达");
} else {
System.out.println(source + "到" + i + "的最短路径为:" + path[i] + ",最短距离是:" + shortest[i]);
}
}
}
}
}