110. 平衡二叉树
给定一个二叉树,判断它是否是高度平衡的二叉树。
本题中,一棵高度平衡二叉树定义为:
一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过1。
示例 1:
给定二叉树 [3,9,20,null,null,15,7]
3
/ \
9 20
/ \
15 7
返回 true 。
示例 2:
给定二叉树 [1,2,2,3,3,null,null,4,4]
1
/ \
2 2
/ \
3 3
/ \
4 4
返回 false 。
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
/*
1
/ \
2 8
/ \
3 7
/ \
4 5
如图:
* l往左递归到4,4.left没了,return 0 ,终止左递归,r再递归到右边的5,同样得到0 ,Math.max(0,0)得到0, return 1+0 = 1 , 因此第 4 5 这层数的高度暂定为1 。也就是3的高度为l = 1 , r= 0.
* 经过一样的过程得到 l-r =1 ,还是平衡二叉树, 1+ Math.max(1,0) = 2, 再推出递归到2 ,此时l_2 = 2 ,r = 0 , Math.abs(l-r) = 2 >1 因此return false;
*/
class Solution {
public boolean res = true;
public boolean isBalanced(TreeNode root) {
maxDepth(root);
return res;
}
public int maxDepth(TreeNode root){
if(root ==null) return 0;
int l = maxDepth(root.left);
int r = maxDepth(root.right);
if (Math.abs(l-r)>1) res = false;
return 1+Math.max(l,r);
}
}
利用栈
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public boolean isValidBST(TreeNode root) {
if (root == null) return true;
Stack<TreeNode> stack = new Stack<>();
TreeNode pre = null;
while (root != null || !stack.isEmpty()) {
while (root != null) {
stack.push(root);
root = root.left;
}
//弹出最外围的左子树
root = stack.pop();
if(pre != null && root.val <= pre.val) return false;
pre = root;
root = root.right;
}
return true;
}
}