深度学习计算 - 参数管理

参数管理

在选择了架构并设置了超参数后,我们就进入了训练阶段。此时,我们的目标时找到损失函数最小化的模型参数值。经过训练后,我们将需要使用这些参数来做出未来的预测。此外,有时我们希望提取参数,以便在其他环境中复用它们,将模型保存下来,以便它可以在其他软件中执行,或者为了获得科学的理解而进行检查

之前的介绍中,我们只依靠深度学习框架来完成训练的工作,而忽略了操作参数的具体细节。本节,我们将介绍以下内容:

  • 访问参数,用于调试、诊断和可视化
  • 参数初始化
  • 在不同模型组件间共享参数

首先看一下具有单隐藏层的多层感知机

import torch
from torch import nn

net = nn.Sequential(nn.Linear(4,8),nn.ReLU(),nn.Linear(8,1))
X = torch.rand(size=(2,4))
net(X)
tensor([[0.2176],
        [0.0112]], grad_fn=<AddmmBackward0>)

1 - 参数访问

我们从已有模型中访问参数,当通过Sequential类定义模型时,我们可以通过索引来访问模型的任意层。这就像模型是一个列表一样,每层的参数都在其属性中

如下所示,我们可以检查第二个全连接层的参数

print(net[2].state_dict())
OrderedDict([('weight', tensor([[-0.3304,  0.0807, -0.0356, -0.3091, -0.1995,  0.3023, -0.2296, -0.0459]])), ('bias', tensor([0.1127]))])

输出的结果告诉我们一些重要的事情:首先,这个全连接层包含两个参数,分别是该层的权重和偏置。两者都存储为单精度浮点数(float32)。注意,参数名词允许唯一标识每个参数,即使在包含数百个层的网络中也是如此

目标参数

注意,每个参数都表示为参数类的一个实例。要对参数执行任何操作,首先我们需要访问底层的数值。有几种方法可以做到这一点,有些比较简单,而另一些则比较通用

下面的代码从第二个全连接层(即第三个神经网络层)提取偏置,提取返回的是一个参数类实例,并进一步访问该参数的值

print(type(net[2].bias))
print(net[2].bias)
print(net[2].bias.data)
<class 'torch.nn.parameter.Parameter'>
Parameter containing:
tensor([0.1127], requires_grad=True)
tensor([0.1127])

参数是复合的对象,包含值、梯度和额外信息。这就是我们需要显示参数值的原因,除了值之外,我们还可以访问没饿过参数的梯度

在上面这个网络中,由于我们还没有调用反向传播,故参数的梯度处于初始状态

net[2].weight.grad == None
True

一次性访问所有参数

当我们需要对所有参数执行操作时,逐个访问它们可能会很麻烦,当我们处理更复杂的块(例如,嵌套块),情况可能变得复杂,因此我们需要递归整个树来提取每个子块的参数。

下面,我们将通过演示来比较访问第一个全连接层的参数和访问所有层

print(*[(name,param.shape) for name,param in net[0].named_parameters()])
print(*[(name, param.shape) for name, param in net.named_parameters()])
('weight', torch.Size([8, 4])) ('bias', torch.Size([8]))
('0.weight', torch.Size([8, 4])) ('0.bias', torch.Size([8])) ('2.weight', torch.Size([1, 8])) ('2.bias', torch.Size([1]))

这为我们提供了另一种访问网络参数的方式,如下所示

net.state_dict()['2.bias'].data
tensor([0.1127])

从嵌套块收集参数

让我们看看,若我们将多个块相互嵌套,参数命名约定是如何工作的。我们首先定义一个生成块的函数(可以说是“块工厂”),然后将这些块组合到更大的块中

def block1():
    return nn.Sequential(nn.Linear(4,8),nn.ReLU(),
                        nn.Linear(8,4),nn.ReLU())

def block2():
    net = nn.Sequential()
    for i in range(4):
        # 在这里嵌套
        net.add_module(f'block {i}',block1())
    return net

rgnet = nn.Sequential(block2(),nn.Linear(4,1))
rgnet(X)
tensor([[0.5343],
        [0.5339]], grad_fn=<AddmmBackward0>)
print(rgnet)
Sequential(
  (0): Sequential(
    (block 0): Sequential(
      (0): Linear(in_features=4, out_features=8, bias=True)
      (1): ReLU()
      (2): Linear(in_features=8, out_features=4, bias=True)
      (3): ReLU()
    )
    (block 1): Sequential(
      (0): Linear(in_features=4, out_features=8, bias=True)
      (1): ReLU()
      (2): Linear(in_features=8, out_features=4, bias=True)
      (3): ReLU()
    )
    (block 2): Sequential(
      (0): Linear(in_features=4, out_features=8, bias=True)
      (1): ReLU()
      (2): Linear(in_features=8, out_features=4, bias=True)
      (3): ReLU()
    )
    (block 3): Sequential(
      (0): Linear(in_features=4, out_features=8, bias=True)
      (1): ReLU()
      (2): Linear(in_features=8, out_features=4, bias=True)
      (3): ReLU()
    )
  )
  (1): Linear(in_features=4, out_features=1, bias=True)
)

因为层是分层嵌套的,故我们也可以像通过嵌套列表索引一样访问它们

下面,我们访问第一个主要块中的第二个子块的第一层的偏置项

rgnet[0][1][0].bias.data
tensor([-0.3401, -0.2245, -0.0612, -0.0883, -0.0258,  0.2400, -0.0863,  0.4611])

2 - 参数初始化

深度学习框架提供默认随机初始化,也允许我们创建自定义初始化方法,满足我们通过其他规则实现初始化权重

默认情况下,PyTorch会根据一个范围均匀地出花权重和偏置矩阵,这个范围是根据输入和输出维度计算的。PyTorch的nn.init模块提供了多种预置初始化方法

内置初始化

让我们先调用内置的初始化器,下面的代码将所有权重参数初始化为标准差为0.01的高斯随机变量,且将偏置参数设置为0

def init_normal(m):
    if type(m) == nn.Linear:
        nn.init.normal_(m.weight,mean=0,std=0.01)
        nn.init.zeros_(m.bias)
        
net.apply(init_normal)
net[0].weight.data[0],net[0].bias.data[0]
(tensor([ 0.0078,  0.0142,  0.0025, -0.0056]), tensor(0.))

我们还可以将所有参数初始化为给定的常数,比如初始化为1

def init_constant(m):
    if type(m) == nn.Linear:
        nn.init.constant_(m.weight,1)
        nn.init.zeros_(m.bias)
        
net.apply(init_constant)
net[0].weight.data[0],net[0].bias.data[0]
(tensor([1., 1., 1., 1.]), tensor(0.))

我们还可以对某些块应用不同的初始化方法。例如,下面使用Xavier初始化方法初始化第一个神经网络层,然后将第三个神经网络层初始化为常量值42

def xavier(m):
    if type(m) == nn.Linear:
        nn.init.xavier_uniform_(m.weight)

def init_42(m):
    if type(m) == nn.Linear:
        nn.init.constant_(m.weight,42)
        
net[0].apply(xavier)
net[2].apply(init_42)
print(net[0].weight.data[0])
print(net[2].weight.data)
tensor([ 0.6295,  0.3033,  0.1105, -0.2207])
tensor([[42., 42., 42., 42., 42., 42., 42., 42.]])

自定义初始化

def my_init(m):
    if type(m) == nn.Linear:
        print("Init",*[(name,param.shape) for name,param in m.named_parameters()][0])
        nn.init.uniform_(m.weight,-10,10)
        m.weight.data *= m.weight.data.abs() >= 5
        
net.apply(my_init)
net[0].weight[:2]
Init weight torch.Size([8, 4])
Init weight torch.Size([1, 8])





tensor([[ 0.0000, -8.8770, -0.0000, -0.0000],
        [-5.7319, -8.3254, -0.0000,  7.5442]], grad_fn=<SliceBackward0>)

注意,我们始终可以之间设置参数

net[0].weight.data[:] += 1
net[0].weight.data[0,0] = 42
net[0].weight.data[0]
tensor([42.0000, -7.8770,  1.0000,  1.0000])

3 - 参数绑定

有时我们希望在多个层共享参数:我们可以定义一个稠密层,然后使用它的参数来设置另一个层的参数

# 我们需要给共享层一个名称,以便可以引用它的参数
shared = nn.Linear(8,8)
net = nn.Sequential(nn.Linear(4,8),nn.ReLU(),
                   shared,nn.ReLU(),
                   shared,nn.ReLU(),
                   nn.Linear(8,1))

net(X)
# 检查参数是否相同
print(net[2].weight.data[0] == net[4].weight.data[0])
net[2].weight.data[0,0] = 100
# 确保它们实际上是同一个对象,而不只是有相同的值
print(net[2].weight.data[0] == net[4].weight.data[0])
tensor([True, True, True, True, True, True, True, True])
tensor([True, True, True, True, True, True, True, True])

这个例⼦表明第三个和第五个神经⽹络层的参数是绑定的。它们不仅值相等,⽽且由相同的张量表⽰。因此,如果我们改变其中⼀个参数,另⼀个参数也会改变。你可能会思考:当参数绑定时,梯度会发⽣什么情况?答案是由于模型参数包含梯度,因此在反向传播期间第⼆个隐藏层(即第三个神经⽹络层)和第三个隐藏层(即第五个神经⽹络层)的梯度会加在⼀起

4 - 小结

  • 我们有几种方法可以访问、初始化和绑定模型参数
  • 我们可以使用自定义初始化方法
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值