自然语言处理:预训练 - 词的相似性和类比任务

词的相似性和类比任务

在14.4节中,我们在一个小的数据集上训练了一个word2vec模型,并使用它为为一个输入词寻找语义相似的词。实际上,在大型语料库上预先训练的词向量可以应用于下游的自然语言处理任务,这将在后面的15节中讨论。为了直观地演示大型语料库中预训练词向量的语义,让我们将预训练词向量应用到词的相似性和类比任务中

import os
import torch
from torch import nn
from d2l import torch as d2l

1 - 加载预训练词向量

以下列出维度为50、100和300的预训练GloVe嵌入,可从Glove网站下载。预训练的fastText嵌入有多种语言。这里我们使用可以从fastText网站下载300维度的英文版本(“wiki.en”)

d2l.DATA_HUB['glove.6b.50d'] = (d2l.DATA_URL + 'glove.6B.50d.zip','0b8703943ccdb6eb788e6f091b8946e82231bc4d')

d2l.DATA_HUB['glove.6b.100d'] = (d2l.DATA_URL + 'glove.6B.100d.zip','cd43bfb07e44e6f27cbcc7bc9ae3d80284fdaf5a')

d2l.DATA_HUB['glove.42b.300d'] = (d2l.DATA_URL + 'glove.42B.300d.zip','b5116e234e9eb9076672cfeabf5469f3eec904fa')

d2l.DATA_HUB['wiki.en'] = (d2l.DATA_URL + 'wiki.en.zip','c1816da3821ae9f43899be655002f6c723e91b88')

为了加载这些预训练的GloVe和fastText嵌入,我们定义以下TokenEmbedding类

class TokenEmbedding:
    """GloVe嵌入"""
    def __init__(self,embedding_name):
        self.idx_to_token,self.idx_to_vec = self._load_embedding(embedding_name)
        self.unknown_idx = 0
        self.token_to_idx = {token:idx for idx,token in enumerate(self.idx_to_token)}
    
    def _load_embedding(self,embedding_name):
        idx_to_token,idx_to_vec = ['<unk>'],[]
        data_dir = d2l.download_extract(embedding_name)
        # GloVe⽹站:https://nlp.stanford.edu/projects/glove/
        # fastText⽹站:https://fasttext.cc/
        with open(os.path.join(data_dir,'vec.txt'),'r',encoding='utf-8') as f:
            for line in f:
                elems = line.rstrip().split(' ')
                token,elems = elems[0],[float(elem) for elem in elems[1:]]
                # 跳过标题信息,例如fastText中的首行
                if len(elems) > 1:
                    idx_to_token.append(token)
                    idx_to_vec.append(elems)
        idx_to_vec = [[0] * len(idx_to_vec[0])] + idx_to_vec
        return idx_to_token,torch.tensor(idx_to_vec)
    
    def __getitem__(self,tokens):
        indices = [self.token_to_idx.get(token,self.unknown_idx) for token in tokens]
        vecs = self.idx_to_vec[torch.tensor(indices)]
        return vecs
    
    def __len__(self):
        return len(self.idx_to_token)

下面我们加载50维GloVe嵌入。创建TokenEmbedding实例时,若尚未下载指定的嵌入文件,则必须下载该文件

glove_6b50d = TokenEmbedding('glove.6b.50d')

输出词表大小。词表包含400000个词(词元)和一个特殊从未知词元

len(glove_6b50d)
400001

我们可以得到词表中一个单词的索引,反正亦然

glove_6b50d.token_to_idx['beautiful'], glove_6b50d.idx_to_token[3367]
(3367, 'beautiful')

2 - 应用预训练词向量

使用加载的GloVe向量,我们将通过下面的词相似性和类比任务中来展示词向量的语义

词相似度

与14.4.3节类似,为了根据词向量之间的余弦相似性为输入词查找语义相似的词,我们实现了以下knn(k近邻)函数

def knn(W,x,k):
    # 增加1e-9以获得数值稳定性
    cos = torch.mv(W,x.reshape(-1,)) / (torch.sqrt(torch.sum(W * W,axis = 1) + 1e-9) * torch.sqrt((x * x).sum()))
    _,topk = torch.topk(cos,k=k)
    return topk,[cos[int(i)] for i in topk]

然后,我们使用TokenEmbedding的实例embed中预训练好的词向量来搜索相似的词

def get_similar_tokens(query_token,k,embed):
    topk,cos = knn(embed.idx_to_vec,embed[[query_token]],k + 1)
    for i,c in zip(topk[1:],cos[1:]): # 排除输入词
        print(f'{embed.idx_to_token[int(i)]}: cosine相似度={float(c):.3f}')

glove_6b50d中预训练词向量的词表包含400000个词和一个特殊的未知词元,排除输入词和未知词元后,我们在词表中找到“chip”一词语义最相似的三个词

get_similar_tokens('chip',3,glove_6b50d)
chips: cosine相似度=0.856
intel: cosine相似度=0.749
electronics: cosine相似度=0.749

下面输出与“baby”和“beautiful”相似的词

get_similar_tokens('baby',3,glove_6b50d)
babies: cosine相似度=0.839
boy: cosine相似度=0.800
girl: cosine相似度=0.792
get_similar_tokens('beautiful',3,glove_6b50d)
lovely: cosine相似度=0.921
gorgeous: cosine相似度=0.893
wonderful: cosine相似度=0.830

词类比

除了找到相似的词,我们还可以将词向量应用到此类比任务中,例如,“man”:“woman”::“son”:“daughter”是⼀个词的类⽐。“man”是对“woman”的类⽐,“son”是对“daughter”的类⽐。具体来说,此类比任务可以定义为:对于但此类比a🅱️c:d,给出前三个词a、b、c,找到d。用vec(w)表示词的向量,为了完成这个类比,我们将找到一个词,其向量与vec©+vec(b)-vec(a)的结果最相似

def get_analogy(token_a,token_b,token_c,embed):
    vecs = embed[[token_a,token_b,token_c]]
    x = vecs[1] - vecs[0] + vecs[2]
    topk,cos = knn(embed.idx_to_vec,x,1)
    return embed.idx_to_token[int(topk[0])] # 删除未知词

让我们使用加载的词向量来验证“male-female”类比

get_analogy('man', 'woman', 'son', glove_6b50d)
'daughter'

下面完成一个“首都-国家”的类比:“beijing”:“china”::“tokyo”:“japan”。这说明了预训练词向量中的语义

get_analogy('beijing','china','tokyo',glove_6b50d)
'japan'

另外,对于“bad”:“worst”::“big”:“biggest”等“形容词-形容词最高级”的比喻,预训练词向量可以捕捉到句法信息

get_analogy('bad', 'worst', 'big', glove_6b50d)
'biggest'

为了演示在预训练词向量中捕捉到过去式概念,我们可以使用“现在式-过去式”的类比来测试句法:“do”:“did”::“go”:“went”

get_analogy('do','did','go',glove_6b50d)
'went'

3 - 小结

  • 在实践中,在大型语料库上预先训练的词向量可以应用于下游的自然语言处理任务
  • 预训练的词向量可以应用于词的相似性和类比任务
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值