神经网络系统图片高清,神经网络系统图片结构

如何简单形象又有趣地讲解神经网络是什么?

神经网络最重要的用途是分类,为了让大家对分类有个直观的认识,咱们先看几个例子:垃圾邮件识别:现在有一封电子邮件,把出现在里面的所有词汇提取出来,送进一个机器里,机器需要判断这封邮件是否是垃圾邮件。

疾病判断:病人到医院去做了一大堆肝功、尿检测验,把测验结果送进一个机器里,机器需要判断这个病人是否得病,得的什么病。

猫狗分类:有一大堆猫、狗照片,把每一张照片送进一个机器里,机器需要判断这幅照片里的东西是猫还是狗。这种能自动对输入的东西进行分类的机器,就叫做分类器。分类器的输入是一个数值向量,叫做特征(向量)。

在第一个例子里,分类器的输入是一堆0、1值,表示字典里的每一个词是否在邮件中出现,比如向量(1,1,0,0,0……)就表示这封邮件里只出现了两个词abandon和abnormal;第二个例子里,分类器的输入是一堆化验指标;第三个例子里,分类器的输入是照片,假如每一张照片都是320*240像素的红绿蓝三通道彩色照片,那么分类器的输入就是一个长度为320*240*3=230400的向量。

分类器的输出也是数值。

第一个例子中,输出1表示邮件是垃圾邮件,输出0则说明邮件是正常邮件;第二个例子中,输出0表示健康,输出1表示有甲肝,输出2表示有乙肝,输出3表示有饼干等等;第三个例子中,输出0表示图片中是狗,输出1表示是猫。

分类器的目标就是让正确分类的比例尽可能高。一般我们需要首先收集一些样本,人为标记上正确分类结果,然后用这些标记好的数据训练分类器,训练好的分类器就可以在新来的特征向量上工作了。

谷歌人工智能写作项目:小发猫

什么是BP神经网络?

常见的神经网络结构

BP算法的基本思想是:学习过程由信号正向传播与误差的反向回传两个部分组成;正向传播时,输入样本从输入层传入,经各隐层依次逐层处理,传向输出层,若输出层输出与期望不符,则将误差作为调整信号逐层反向回传,对神经元之间的连接权矩阵做出处理,使误差减小。

经反复学习,最终使误差减小到可接受的范围。具体步骤如下:1、从训练集中取出某一样本,把信息输入网络中。2、通过各节点间的连接情况正向逐层处理后,得到神经网络的实际输出。

3、计算网络实际输出与期望输出的误差。4、将误差逐层反向回传至之前各层,并按一定原则将误差信号加载到连接权值上,使整个神经网络的连接权值向误差减小的方向转化。

5、対训练集中每一个输入—输出样本对重复以上步骤,直到整个训练样本集的误差减小到符合要求为止。

如何通过人工神经网络实现图像识别

人工神经网络(ArtificialNeuralNetworks)(简称ANN)系统从20世纪40年代末诞生至今仅短短半个多世纪,但由于他具有信息的分布存储、并行处理以及自学习能力等优点,已经在信息处理、模式识别、智能控制及系统建模等领域得到越来越广泛的应用。

尤其是基于误差反向传播(ErrorBackPropagation)算法的多层前馈网络(Multiple-LayerFeedforwardNetwork)(简称BP网络),可以以任意精度逼近任意的连续函数,所以广泛应用于非线性建模、函数逼近、模式分类等方面。

目标识别是模式识别领域的一项传统的课题,这是因为目标识别不是一个孤立的问题,而是模式识别领域中大多数课题都会遇到的基本问题,并且在不同的课题中,由于具体的条件不同,解决的方法也不尽相同,因而目标识别的研究仍具有理论和实践意义。

这里讨论的是将要识别的目标物体用成像头(红外或可见光等)摄入后形成的图像信号序列送入计算机,用神经网络识别图像的问题。

一、BP神经网络BP网络是采用Widrow-Hoff学习算法和非线性可微转移函数的多层网络。一个典型的BP网络采用的是梯度下降算法,也就是Widrow-Hoff算法所规定的。

backpropagation就是指的为非线性多层网络计算梯度的方法。一个典型的BP网络结构如图所示。我们将它用向量图表示如下图所示。

其中:对于第k个模式对,输出层单元的j的加权输入为该单元的实际输出为而隐含层单元i的加权输入为该单元的实际输出为函数f为可微分递减函数其算法描述如下:(1)初始化网络及学习参数,如设置网络初始权矩阵、学习因子等。

(2)提供训练模式,训练网络,直到满足学习要求。(3)前向传播过程:对给定训练模式输入,计算网络的输出模式,并与期望模式比较,若有误差,则执行(4);否则,返回(2)。

(4)后向传播过程:a.计算同一层单元的误差;b.修正权值和阈值;c.返回(2)二、BP网络隐层个数的选择对于含有一个隐层的三层BP网络可以实现输入到输出的任何非线性映射。

增加网络隐层数可以降低误差,提高精度,但同时也使网络复杂化,增加网络的训练时间。误差精度的提高也可以通过增加隐层结点数来实现。一般情况下,应优先考虑增加隐含层的结点数。

三、隐含层神经元个数的选择当用神经网络实现网络映射时,隐含层神经元个数直接影响着神经网络的学习能力和归纳能力。

隐含层神经元数目较少时,网络每次学习的时间较短,但有可能因为学习不足导致网络无法记住全部学习内容;隐含层神经元数目较大时,学习能力增强,网络每次学习的时间较长,网络的存储容量随之变大,导致网络对未知输入的归纳能力下降,因为对隐含层神经元个数的选择尚无理论上的指导,一般凭经验确定。

四、神经网络图像识别系统人工神经网络方法实现模式识别,可处理一些环境信息十分复杂,背景知识不清楚,推理规则不明确的问题,允许样品有较大的缺损、畸变,神经网络方法的缺点是其模型在不断丰富完善中,目前能识别的模式类还不够多,神经网络方法允许样品有较大的缺损和畸变,其运行速度快,自适应性能好,具有较高的分辨率。

神经网络的图像识别系统是神经网络模式识别系统的一种,原理是一致的。一般神经网络图像识别系统由预处理,特征提取和神经网络分类器组成。预处理就是将原始数据中的无用信息删除,平滑,二值化和进行幅度归一化等。

神经网络图像识别系统中的特征提取部分不一定存在,这样就分为两大类:①有特征提取部分的:这一类系统实际上是传统方法与神经网络方法技术的结合,这种方法可以充分利用人的经验来获取模式特征以及神经网络分类能力来识别目标图像。

特征提取必须能反应整个图像的特征。但它的抗干扰能力不如第2类。

②无特征提取部分的:省去特征抽取,整副图像直接作为神经网络的输入,这种方式下,系统的神经网络结构的复杂度大大增加了,输入模式维数的增加导致了网络规模的庞大。

此外,神经网络结构需要完全自己消除模式变形的影响。但是网络的抗干扰性能好,识别率高。当BP网用于分类时,首先要选择各类的样本进行训练,每类样本的个数要近似相等。

其原因在于一方面防止训练后网络对样本多的类别响应过于敏感,而对样本数少的类别不敏感。另一方面可以大幅度提高训练速度,避免网络陷入局部最小点。

由于BP网络不具有不变识别的能力,所以要使网络对模式的平移、旋转、伸缩具有不变性,要尽可能选择各种可能情况的样本。

例如要选择不同姿态、不同方位、不同角度、不同背景等有代表性的样本,这样可以保证网络有较高的识别率。

构造神经网络分类器首先要选择适当的网络结构:神经网络分类器的输入就是图像的特征向量;神经网络分类器的输出节点应该是类别数。隐层数要选好,每层神经元数要合适,目前有很多采用一层隐层的网络结构。

然后要选择适当的学习算法,这样才会有很好的识别效果。

在学习阶段应该用大量的样本进行训练学习,通过样本的大量学习对神经网络的各层网络的连接权值进行修正,使其对样本有正确的识别结果,这就像人记数字一样,网络中的神经元就像是人脑细胞,权值的改变就像是人脑细胞的相互作用的改变,神经网络在样本学习中就像人记数字一样,学习样本时的网络权值调整就相当于人记住各个数字的形象,网络权值就是网络记住的内容,网络学习阶段就像人由不认识数字到认识数字反复学习过程是一样的。

神经网络是按整个特征向量的整体来记忆图像的,只要大多数特征符合曾学习过的样本就可识别为同一类别,所以当样本存在较大噪声时神经网络分类器仍可正确识别。

在图像识别阶段,只要将图像的点阵向量作为神经网络分类器的输入,经过网络的计算,分类器的输出就是识别结果。五、仿真实验1、实验对象本实验用MATLAB完成了对神经网络的训练和图像识别模拟。

从实验数据库中选择0~9这十个数字的BMP格式的目标图像。图像大小为16×8像素,每个目标图像分别加10%、20%、30%、40%、50%大小的随机噪声,共产生60个图像样本。

将样本分为两个部分,一部分用于训练,另一部分用于测试。实验中用于训练的样本为40个,用于测试的样本为20个。随机噪声调用函数randn(m,n)产生。

2、网络结构本试验采用三层的BP网络,输入层神经元个数等于样本图像的象素个数16×8个。隐含层选24个神经元,这是在试验中试出的较理想的隐层结点数。

输出层神经元个数就是要识别的模式数目,此例中有10个模式,所以输出层神经元选择10个,10个神经元与10个模式一一对应。

3、基于MATLAB语言的网络训练与仿真建立并初始化网络% ================S1 = 24;% 隐层神经元数目S1 选为24[R,Q] = size(numdata);[S2,Q] = size(targets);F = numdata;P=double(F);net = newff(minmax(P),[S1 S2],{'logsig''logsig'},'traingda','learngdm')这里numdata为训练样本矩阵,大小为128×40,targets为对应的目标输出矩阵,大小为10×40。

newff(PR,[S1S2…SN],{TF1TF2…TFN},BTF,BLF,PF)为MATLAB函数库中建立一个N层前向BP网络的函数,函数的自变量PR表示网络输入矢量取值范围的矩阵[Pminmax];S1~SN为各层神经元的个数;TF1~TFN用于指定各层神经元的传递函数;BTF用于指定网络的训练函数;BLF用于指定权值和阀值的学习函数;PF用于指定网络的性能函数,缺省值为‘mse’。

设置训练参数net.performFcn = 'sse'; %平方和误差性能函数 = 0.1; %平方和误差目标 = 20; %进程显示频率net.trainParam.epochs = 5000;%最大训练步数 = 0.95; %动量常数网络训练net=init(net);%初始化网络[net,tr] = train(net,P,T);%网络训练对训练好的网络进行仿真D=sim(net,P);A = sim(net,B);B为测试样本向量集,128×20的点阵。

D为网络对训练样本的识别结果,A为测试样本的网络识别结果。实验结果表明:网络对训练样本和对测试样本的识别率均为100%。如图为64579五个数字添加50%随机噪声后网络的识别结果。

六、总结从上述的试验中已经可以看出,采用神经网络识别是切实可行的,给出的例子只是简单的数字识别实验,要想在网络模式下识别复杂的目标图像则需要降低网络规模,增加识别能力,原理是一样的。

超大规模图神经网络系统真的可以实现赋予机器常识吗?

机器学习是人工智能的一个分支。人工智能的研究历史有着一条从以“推理”为重点,到以“知识”为重点,再到以“学习”为重点的自然、清晰的脉络。

机器学习是实现人工智能的一个途径,即以机器学习为手段解决人工智能中的问题。从学习方式来讲,机器学习包括监督式学习、非监督式学习、半监督式学习和强化学习。

以算法来分类,则有回归算法、基于实例的算法、正则化方法、决策树学习、贝叶斯方法、基于核的算法、聚类算法、关联规则学习、遗传算法、人工神经网络、深度学习、降低维度算法和集成算法。

因此,深度学习又是机器学习的分支。深度学习是一种以人工神经网络为架构,对数据进行表征学习的算法。

如今,单纯的深度学习已经成熟,结合了深度学习的图神经网络将端到端学习与归纳推理相结合,有望解决深度学习无法处理的关系推理、可解释性等一系列问题。

强大的图神经网络将会类似于由神经元等节点所形成网络的人的大脑,机器有望成为具备常识,具有理解、认知能力的AI。

机器阅读和理解人类语言比尔·盖茨曾经发表过对人工智能的一些看法,他认为人工智能会有惊人的影响,并且大多都是好的。比如帮助学生,帮助查看分析图像,帮助我们了解发生了什么。

同时他也提出,人工智能还有一件事还不能实现,而一旦实现,将帮助人们解决更多的难题,这一点就是:阅读。

“所有相关的公司都在努力实现这一点,比如有一本生物学的书,人工智能会不会阅读它,然后通过考试或者操作一项实验。

这是最后一个难题,目前视力问题解决了,语言能力也不错,甚至翻译也很好,现在我们都在攻克阅读问题。一旦有了阅读能力,就可以帮助科学发明,这将会非常了不起,可以更好地帮助人们解决问题。

人工智能势头很猛,发展比我们预期的更快,像那场围棋比赛的结果,就是一个惊人的里程碑。”是的,让机器正确理解人类知识和语言的技术比起图片和声音识别技术来说更加困难。

一是因为人类语言的“余地”,语言作为一种表达方式,是非常偏向于模糊和不确定的。

二是因为人类语言会因环境变化而变化,对它的理解多数是通过当时情境的作用,而这一点又让语言理解的复杂程度加倍,机器是难以标记和模拟相关环境的。

尽管互联网上已经包含了足够多的语言文字信息,我们还是无法以机器能够理解的形式将这些信息真正传递给它们。

因此,比尔·盖茨认为让机器学会阅读和理解人类语言是一个里程碑式事件,而微软、谷歌、Facebook和IBM等公司也在发力机器学习阅读理解能力。

从某种意义上来讲,我的理解是,机器阅读人类语言应该也是从弱人工智能到强人工智能跨越的标志之一。机器理解和创造自己随着越来越多的这类技术变得成熟,机器将会在各种各样的任务上超越人类。

那么,机器是否可以理解自己呢?甚至机器是否可以设计和编码自己本身呢?可以想象一下,一旦机器做到这一步,那将会带来什么样的颠覆。

GoogleBrain团队在探索这个领域,他们称之为“自动机器学习”方向。顶尖的人工智能专家们发现,设计机器学习系统本身这样一个他们最困难的工作之一,也有可能通过AI系统自动完成。

甚至在一些场景下,AI系统自己开发的AI系统已经赶上甚至超过了人类专家。

国外著名科技记者StevenLevy在他刊于BackChannel的文章《谷歌如何将自己重塑为一家“机器学习为先”的公司》中提到,谷歌大脑负责人JeffDean表示,如果现在让他改写谷歌的基础设施,大部分代码都不会由人编码,而将由机器学习自动生成。

学术界也有相关研究,伯克利的KeLi和JitendraMalik在他们日前提交的论文《LearningtoOptimize》中提出了让算法自我优化的方法。

他们在论文摘要中写道,“算法设计是一个费力的过程,通常需要许多迭代的思想和验证。在本文中,我们探讨自动化算法设计,并提出了一种方法学习自动优化算法”。

从强化学习的角度入手,KeLi和JitendraMalik使用指导性策略搜索来让AI学习优化算法,并且证明了他们所设计的算法在收敛速度和/或最终目标值方面优于现有的手工编程开发的算法。

想要学习人工神经网络,需要什么样的基础知识?

人工神经网络理论百度网盘下载:链接: 提取码:rxlc简介:本书是人工神经网络理论的入门书籍。全书共分十章。

第一章主要阐述人工神经网络理论的产生及发展历史、理论特点和研究方向;第二章至第九章介绍人工神经网络理论中比较成熟且常用的几种主要网络结构、算法和应用途径;第十章用较多篇幅介绍了人工神经网络理论在各个领域的应用实例。

人工神经网络会秒杀人类哪6大领域?

人工神经网络会秒杀人类有关图像和物体识别、电子游戏、语音生成和识别、艺术品和风格的模仿、预测、网站设计修改这六大领域。记录表明,机器在图像和物体识别方面的能力远远超过了人类。

在一次测试软件识别玩具的能力的实验中,GeoffHinton发明的Capsule网络的错误率几乎只有之前最低错误率的一半。

在不同的扫描过程中,增加这些胶囊的数量可以让系统更好地识别一个物体,即使这个视图与之前分析的不同。

谷歌的DeepMind使用一种被称为“深度强化学习”的深度学习技术,研究人员用这种方法教电脑玩雅达利的打砖块游戏Breakout。他们没有以任何特定的方式对这台电脑进行教学或编程。

相反,它在看分数的同时还控制了键盘,它的目标是得到尽可能高的分数。玩了两个小时后,电脑就成为了这个游戏的专家。

牛津大学和谷歌公司DeepMind的科学家们创造了一个深度网络,LipNet,在阅读人们的唇语上达到了93%的正确率,而普通的人类唇语阅读者只能达到52%的正确率。

来自华盛顿大学的一个小组利用唇形同步创建了一个系统,将合成音频与现有视频实现同步。神经网络可以研究某一特定艺术作品的笔触、颜色和阴影的图案。在此基础上,它可以根据分析将原始的艺术作品转化为新的图像。

斯坦福大学的研究人员TimnitGebru选取了5000万张谷歌街景图片,探索一个深度学习网络可以做些什么。结果是,计算机学会了定位和识别汽车。

它检测到超过2200万辆汽车,包括它们的制造、型号、体型和年份。这一系统获得的洞见之一就是,选民队伍的起点和终点在哪里。

根据这一分析,“如果在15分钟车程中遇到的轿车数量高于皮卡车的数量,那么这座城市可能会在下次总统选举中投票给民主党人(88%的几率),”TimnitGebru和他的合著者写道。

在网站生成器中集成的人工智能可以帮助网站更新,并对网站进行有用的修改,比人类更快速、更准确。这种系统的基本技术提供了关于网站外观的普通用户的意见,这可以告诉设计师网站设计的好坏。

如今,网站建设者们要么利用深层网络来修改设计,要么计划在不久的将来使用它们。该技术可以分析不同的模式,并根据以前的转化率和其他重要指标,创造更好的结果。

BP神经网络的原理的BP什么意思

人工神经网络有很多模型,但是日前应用最广、基本思想最直观、最容易被理解的是多层前馈神经网络及误差逆传播学习算法(ErrorBack-Prooaeation),简称为BP网络。

在1986年以Rumelhart和McCelland为首的科学家出版的《ParallelDistributedProcessing》一书中,完整地提出了误差逆传播学习算法,并被广泛接受。

多层感知网络是一种具有三层或三层以上的阶层型神经网络。

典型的多层感知网络是三层、前馈的阶层网络(图4.1),即:输入层、隐含层(也称中间层)、输出层,具体如下:图4.1三层BP网络结构(1)输入层输入层是网络与外部交互的接口。

一般输入层只是输入矢量的存储层,它并不对输入矢量作任何加工和处理。输入层的神经元数目可以根据需要求解的问题和数据表示的方式来确定。

一般而言,如果输入矢量为图像,则输入层的神经元数目可以为图像的像素数,也可以是经过处理后的图像特征数。

(2)隐含层1989年,RobertHechtNielsno证明了对于任何在闭区间内的一个连续函数都可以用一个隐层的BP网络来逼近,因而一个三层的BP网络可以完成任意的n维到m维的映射。

增加隐含层数虽然可以更进一步的降低误差、提高精度,但是也使网络复杂化,从而增加了网络权值的训练时间。

误差精度的提高也可以通过增加隐含层中的神经元数目来实现,其训练效果也比增加隐含层数更容易观察和调整,所以一般情况应优先考虑增加隐含层的神经元个数,再根据具体情况选择合适的隐含层数。

(3)输出层输出层输出网络训练的结果矢量,输出矢量的维数应根据具体的应用要求来设计,在设计时,应尽可能减少系统的规模,使系统的复杂性减少。

如果网络用作识别器,则识别的类别神经元接近1,而其它神经元输出接近0。

以上三层网络的相邻层之间的各神经元实现全连接,即下一层的每一个神经元与上一层的每个神经元都实现全连接,而且每层各神经元之间无连接,连接强度构成网络的权值矩阵W。

BP网络是以一种有教师示教的方式进行学习的。首先由教师对每一种输入模式设定一个期望输出值。然后对网络输入实际的学习记忆模式,并由输入层经中间层向输出层传播(称为“模式顺传播”)。

实际输出与期望输出的差即是误差。按照误差平方最小这一规则,由输出层往中间层逐层修正连接权值,此过程称为“误差逆传播”(陈正昌,2005)。

所以误差逆传播神经网络也简称BP(BackPropagation)网。随着“模式顺传播”和“误差逆传播”过程的交替反复进行。

网络的实际输出逐渐向各自所对应的期望输出逼近,网络对输入模式的响应的正确率也不断上升。通过此学习过程,确定下各层间的连接权值后。

典型三层BP神经网络学习及程序运行过程如下(标志渊,2006):(1)首先,对各符号的形式及意义进行说明:网络输入向量Pk=(a1,a2,...,an);网络目标向量Tk=(y1,y2,...,yn);中间层单元输入向量Sk=(s1,s2,...,sp),输出向量Bk=(b1,b2,...,bp);输出层单元输入向量Lk=(l1,l2,...,lq),输出向量Ck=(c1,c2,...,cq);输入层至中间层的连接权wij,i=1,2,...,n,j=1,2,...p;中间层至输出层的连接权vjt,j=1,2,...,p,t=1,2,...,p;中间层各单元的输出阈值θj,j=1,2,...,p;输出层各单元的输出阈值γj,j=1,2,...,p;参数k=1,2,...,m。

(2)初始化。给每个连接权值wij、vjt、阈值θj与γj赋予区间(-1,1)内的随机值。(3)随机选取一组输入和目标样本提供给网络。

(4)用输入样本、连接权wij和阈值θj计算中间层各单元的输入sj,然后用sj通过传递函数计算中间层各单元的输出bj。

基坑降水工程的环境效应与评价方法bj=f(sj)j=1,2,...,p(4.5)(5)利用中间层的输出bj、连接权vjt和阈值γt计算输出层各单元的输出Lt,然后通过传递函数计算输出层各单元的响应Ct。

基坑降水工程的环境效应与评价方法Ct=f(Lt)t=1,2,...,q(4.7)(6)利用网络目标向量,网络的实际输出Ct,计算输出层的各单元一般化误差。

基坑降水工程的环境效应与评价方法(7)利用连接权vjt、输出层的一般化误差dt和中间层的输出bj计算中间层各单元的一般化误差。

基坑降水工程的环境效应与评价方法(8)利用输出层各单元的一般化误差与中间层各单元的输出bj来修正连接权vjt和阈值γt。

基坑降水工程的环境效应与评价方法(9)利用中间层各单元的一般化误差,输入层各单元的输入Pk=(a1,a2,...,an)来修正连接权wij和阈值θj。

基坑降水工程的环境效应与评价方法(10)随机选取下一个学习样本向量提供给网络,返回到步骤(3),直到m个训练样本训练完毕。

(11)重新从m个学习样本中随机选取一组输入和目标样本,返回步骤(3),直到网路全局误差E小于预先设定的一个极小值,即网络收敛。如果学习次数大于预先设定的值,网络就无法收敛。(12)学习结束。

可以看出,在以上学习步骤中,(8)、(9)步为网络误差的“逆传播过程”,(10)、(11)步则用于完成训练和收敛过程。通常,经过训练的网络还应该进行性能测试。

测试的方法就是选择测试样本向量,将其提供给网络,检验网络对其分类的正确性。测试样本向量中应该包含今后网络应用过程中可能遇到的主要典型模式(宋大奇,2006)。

这些样本可以直接测取得到,也可以通过仿真得到,在样本数据较少或者较难得到时,也可以通过对学习样本加上适当的噪声或按照一定规则插值得到。

为了更好地验证网络的泛化能力,一个良好的测试样本集中不应该包含和学习样本完全相同的模式(董军,2007)。

人工智能,机器学习和深度学习的区别是什么

为了搞清三者关系,我们来看一张图:如图所示:人工智能最大,此概念也最先问世;然后是机器学习,出现的稍晚;最后才是深度学习。

从低潮到繁荣自从1956年计算机科学家们在达特茅斯会议(DartmouthConferences)上确认人工智能这个术语以来,人们就不乏关于人工智能奇思妙想,研究人员也在不遗余力地研究。

在此后的几十年间,人工智能先是被捧为人类文明光明未来的钥匙,后又被当作过于自大的异想天开而抛弃。但是在过去几年中,人工智能出现了爆炸式的发展,尤其是2015年之后。

大部分原因,要归功于图形处理器(GPU)的广泛应用,使得并行处理更快、更便宜、更强大。

另外,人工智能的发展还得益于几乎无限的存储空间和海量数据的出现(大数据运动):图像、文本、交易数据、地图数据,应有尽有。下面我们从发展的历程中来一一展开对人工智能、机器学习和深度学习的深度学习。

人工智能人工智能先驱们在达特茅斯开会时,心中的梦想是希望通过当时新兴的计算机,打造拥有相当于人类智能的复杂机器。

这就是我们所说的“通用人工智能”(GeneralAI)概念,拥有人类五感(甚至更多)、推理能力以及人类思维方式的神奇机器。

在电影中我们已经看过无数这样的机器人,对人类友好的C-3PO,以及人类的敌人终结者。通用人工智能机器至今只存在于电影和科幻小说里,理由很简单:我们还实现不了,至少目前为止。

我们力所能及的,算是“弱人工智能”(NarrowAI):执行特定任务的水平与人类相当,甚至超越人类的技术。现实中有很多弱人工智能的例子。这些技术有人类智能的一面。但是它们是如何做到的?智能来自哪里?

这就涉及到下一个同心圆:机器学习。机器学习机器学习是实现人工智能的一种方法。机器学习的概念来自早期的人工智能研究者,已经研究出的算法包括决策树学习、归纳逻辑编程、增强学习和贝叶斯网络等。

简单来说,机器学习就是使用算法分析数据,从中学习并做出推断或预测。与传统的使用特定指令集手写软件不同,我们使用大量数据和算法来“训练”机器,由此带来机器学习如何完成任务。

许多年来,计算机视觉一直是机器学习最佳的领用领域之一,尽管还需要大量的手动编码才能完成任务。

研究者会手动编写一些分类器(classifier),如边缘检测筛选器,帮助程序辨别物体的边界;图形检测分类器,判断物体是否有八个面;以及识别“S-T-O-P”的分类器。

在这些手动编写的分类器的基础上,他们再开发用于理解图像的算法,并学习如何判断是否有停止标志。但是由于计算机视觉和图像检测技术的滞后,经常容易出错。深度学习深度学习是实现机器学习的一种技术。

早期机器学习研究者中还开发了一种叫人工神经网络的算法,但是发明之后数十年都默默无闻。神经网络是受人类大脑的启发而来的:神经元之间的相互连接关系。

但是,人类大脑中的神经元可以与特定范围内的任意神经元连接,而人工神经网络中数据传播要经历不同的层,传播方向也不同。举个例子,你可以将一张图片切分为小块,然后输入到神经网络的第一层中。

在第一层中做初步计算,然后神经元将数据传至第二层。由第二层神经元执行任务,依次类推,直到最后一层,然后输出最终的结果。每个神经元都会给其输入指定一个权重:相对于执行的任务该神经元的正确和错误程度。

最终的输出由这些权重共同决定。因此,我们再来看看上面提到的停止标志示例。一张停止标志图像的属性,被一一细分,然后被神经元“检查”:形状、颜色、字符、标志大小和是否运动。

神经网络的任务是判断这是否是一个停止标志。它将给出一个“概率向量”(probabilityvector),这其实是基于权重做出的猜测结果。

在本文的示例中,系统可能会有86%的把握认定图像是一个停止标志,7%的把握认为是一个限速标志,等等。网络架构然后会告知神经网络其判断是否正确。

不过,问题在于即使是最基础的神经网络也要耗费巨大的计算资源,因此当时不算是一个可行的方法。

不过,以多伦多大学GeoffreyHinton教授为首的一小批狂热研究者们坚持采用这种方法,最终让超级计算机能够并行执行该算法,并证明该算法的作用。

如果我们回到停止标志那个例子,很有可能神经网络受训练的影响,会经常给出错误的答案。这说明还需要不断的训练。

它需要成千上万张图片,甚至数百万张图片来训练,直到神经元输入的权重调整到非常精确,几乎每次都能够给出正确答案。

不过值得庆幸的是Facebook利用神经网络记住了你母亲的面孔;吴恩达2012年在谷歌实现了可以识别猫的神经网络。

如今,在某些情况下,通过深度学习训练过的机器在图像识别上表现优于人类,这包括找猫、识别血液中的癌症迹象等。谷歌的AlphaGo学会了围棋,并为比赛进行了大量的训练:不断的和自己比赛。

总结人工智能的根本在于智能,而机器学习则是部署支持人工智能的计算方法。简单的将,人工智能是科学,机器学习是让机器变得更加智能的算法,机器学习在某种程度上成就了人工智能。

本文作者MichaelCopeland曾是WIRED编辑,现在是硅谷知名投资机构AndreessenHorowitz的合伙人。

人们识别图像是靠形状,那AI是怎么识别图像的?

德国研究团队给出一个原因,这个原因出乎意料:人类会关注图中对象的形状,深度学习计算机系统所用的算法不一样,它会研究对象的纹理。首先人类向算法展示大量图片,有的图片有猫,有的没有。

算法从图片中找到“特定模式”,然后用模式来做出判断,看看面对之前从未见过的图片应该贴怎样的标签。神经网络架构是根据人类视觉系统开发的,网络各层连接在一起,从图片中提取抽象特点。

神经网络系统通过一系列联系得出正确答案,不过整个处理过程十分神秘,人类往往只能在事实形成之后再解释这个神秘的过程。研究人员修改图片,欺骗神经网络,看看会发生什么事。

研究人员发现,即使只是小小的修改,系统也会给出完全错误的答案,当修改幅度很大时,系统甚至无法给图片贴标签。还有一些研究人员追溯网络,查看单个神经元会对图像做出怎样的反应,理解系统学到了什么。

德国图宾根大学科学家Geirhos领导的团队采用独特方法进行研究。

去年,团队发表报告称,他们用特殊噪点干扰图像,给图像降级,然后用图像训练神经网络,研究发现,如果将新图像交给系统处理,这些图像被人扭曲过(相同的扭曲),在识别扭曲图像时,系统的表现比人好。

不过如果图像扭曲的方式稍有不同,神经网络就无能为力了,即使在人眼看来图像的扭曲方式并无不同,算法也会犯错。

当你在很长的时间段内添加许多噪点,图中对象的形状基本不会受到影响;不过即使只是添加少量噪点,局部位置的架构也会快速扭曲。研究人员想出一个妙招,对人类、深度学习系统处理图片的方式进行测试。

算法将图像分成为小块,接下来,它不会将信息逐步融合,变成抽象高级特征,而是给每一小块下一个决定,比如这块包含自行车、那块包含鸟。

再接下来,算法将决定集合起来,判断图中是什么,比如有更多小块包含自行车线索,所以图中对象是自行车。算法不会考虑小块之间的空间关系。结果证明,在识别对象时系统的精准度很高。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值