自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(153)
  • 收藏
  • 关注

原创 基于深度学习LSTM+NLP情感分析电影数据爬虫可视化分析推荐系统(深度学习LSTM+机器学习双推荐算法+scrapy爬虫+NLP情感分析+数据分析可视化)

本项目旨在基于深度学习LSTM(Long Short-Term Memory)模型,基于python编程语言,Vue框架进行前后端分离,结合机器学习双推荐算法、scrapy爬虫技术、PaddleNLP情感分析以及可视化技术,构建一个综合的电影数据爬虫可视化+NLP情感分析推荐系统。通过该系统,用户可以获取电影数据、进行情感分析,并获得个性化的电影推荐,从而提升用户体验和满足用户需求。首先,项目将利用scrapy爬虫框架从多个电影网站上爬取丰富的电影数据,包括电影名称、类型、演员信息、剧情简介等。

2024-03-17 21:37:29 2602 32

原创 大数据旅游数据分析:基于Python旅游数据采集可视化分析推荐系统

本系统主要针对解决获取旅游信息滞后、参加线下旅行社和人工检索时间成本高等问题,运用网络爬虫信息技术设计思想,实现了一个基于Python的旅游信息推荐系统。本系统以Python语言为基础,使用 requests爬虫对去哪儿旅游信息源进行抓取,针对网页信息编写抽取规则,对旅游信息进行必要的过滤和提取,使用MySql对旅游信息进行数据存储。然后使用 Python 开源web框架 Django进行系统搭建,基于旅游信息采用机器学习协同过滤推荐算法完成对用户的旅游信息推荐,完成整个爬取以及数据检索到成功进行旅游推荐。

2024-02-29 18:20:43 4911 32

原创 大数据招聘信息数据分析:基于Python网络爬虫的IT招聘就业岗位数据分析可视化推荐系统

本项目旨在开发一个基于Python网络爬虫技术的IT招聘就业岗位可视化分析推荐系统。数据来源于Boss直聘招聘网站,采集到的各种岗位数据信息量合计在70万左右,数据精确真实可靠,本项目主要利用selenium、requests爬虫以及BeautifulSoup、numpy和Pandas等库进行数据的获取与分析处理。除此之外,项目还包括词云生成、数据分析、精准分析岗位算法推荐以及多维度薪资预测等功能,旨在为求职者提供全面的就业信息支持。

2024-02-23 17:01:11 2742 28

原创 大数据知识图谱之深度学习——基于BERT+LSTM+CRF深度学习识别模型医疗知识图谱问答可视化系统

基于BERT+LSTM+CRF深度学习识别模型医疗知识图谱问答可视化系统通过构建医疗领域的知识图谱来实现计算机的深度学习,并且能够实现自动问答的功能。本次的内容研究主要是通过以Python技术来对医疗相关内容进行数据的爬取,通过爬取足量的数据来进行知识图谱的的搭建,基于Python语言通过echarts、Neo4j来实现知识图谱的可视化。通过智慧问答的方式构建出以BERT+LSTM+CRF的深度学习识别模型,从而完成对医疗问句主体的识别,构建出数据集以及实现文本的训练。通过Django来进行web网页的开发

2024-02-01 20:45:19 5370 51

原创 基于SpringBoot+Vue学科竞赛管理系统

基于SpringBoot+Vue学科竞赛管理系统是一个基于B/S模式系统,采用SSM框架,MYSQL数据库设计开发,充分保证系统的稳定性。系统具有界面清晰、操作简单,功能齐全的特点,使得基于SpringBoot+Vue学科竞赛管理系统管理工作系统化、规范化。本系统的使用使管理人员从繁重的工作中解脱出来,实现无纸化办公,能够有效的提高基于SpringBoot+Vue学科竞赛管理系统管理效率。

2024-02-01 14:02:16 1236 9

原创 大数据深度学习卷积神经网络CNN:CNN结构、训练与优化一文全解

卷积神经网络是一种前馈神经网络,它的人工神经元可以响应周围单元的局部区域,从而能够识别视觉空间的部分结构特征。卷积层: 通过卷积操作检测图像的局部特征。激活函数: 引入非线性,增加模型的表达能力。池化层: 减少特征维度,增加模型的鲁棒性。全连接层: 在处理空间特征后,全连接层用于进行分类或回归。卷积神经网络的这些组件协同工作,使得CNN能够从原始像素中自动学习有意义的特征层次结构。随着深度增加,这些特征从基本形状和纹理逐渐抽象为复杂的对象和场景表现。

2024-01-14 00:32:16 4055 80

原创 大数据农业数据分析:基于Python机器学习算法农业数据可视化分析预测系统

基于python机器学习XGBoost算法农业数据可视化分析预测系统,旨在帮助农民和相关从业者更好地预测农作物产量,以优化农业生产。该系统主要包括四个功能模块。首先,农作物数据可视化模块利用Echarts、Ajax、Flask、PyMysql技术实现了可视化展示农作物产量相关数据的功能。其次,产量预测模块使用pandas、numpy等技术,通过对气象和农作物产量关系数据集的分析和训练,实现了对农作物产量的预测功能。该模块可以对当前或未来某一时间段的农作物产量进行预测,并提供预测结果的可视化展示。

2024-01-12 14:34:23 2078 16

原创 基于大数据机器学习TF-IDF 算法+SnowNLP的智慧旅游数据分析可视化推荐系统

基于机器学习TF-IDF 算法SnowNLP大数据的智慧旅游数据分析可视化推荐系统通过数据采集、数据清洗、数据分析、数据可视化的技术,对景区数据进行爬取和收集。以旅游景点数据为基础分析景区热度,挖掘客流量、景区评价等信息,并对分析的结果进行统计。智慧旅游数据分析系统拟实现景区热度、景区展示、游客统计、景区评价、旅游路线等部分。拟定景区热度通过热力图展示,客流量、景区评价情感分析,景点路线推荐等数据通过折线图、饼图等形式呈现出来,推出各景区旅游路线,并将景区的特色场景展现给游客。

2024-01-03 19:47:44 2087 23

原创 大数据机器学习深入Scikit-learn:掌握Python最强大的机器学习库

Scikit-learn是一个强大且易用的Python库,它为我们提供了一整套的机器学习工具,可以用于解决从数据预处理,到模型训练,再到模型评估和参数调优的全流程任务。Scikit-learn的广泛应用,不仅仅因为它的功能强大,更因为它的设计理念——统一的API,使得我们可以快速地切换不同的模型和算法,而不需要对代码进行大的修改。这种灵活性和易用性,使得Scikit-learn成为了Python机器学习库的首选。

2023-12-25 15:44:23 1883 37

原创 大数据可视化/算法推荐/情感分析——基于Django电影评论数据可视化分析推荐系统

采用Python和Django构建。通过爬取豆瓣电影评论数据,利用数据清洗和处理技术,建立了一个全面的电影信息数据库。使用Python中强大的数据处理库进行统计分析,将结果以直观的可视化图表展示,深入挖掘用户对电影的评价与趋势。基于分析结果,我们设计了推荐算法,通过Django搭建的Web界面向用户推荐个性化的电影选择。该项目结合了大数据、数据可视化和机器学习推荐算法的技术,为电影爱好者提供了更智能、直观的电影推荐体验,展示了Python在构建复杂系统中的强大应用能力。

2023-12-12 00:25:37 1804 26

原创 大数据可视化——基于Python豆瓣电影数据可视化分析系统

本项目旨在通过对豆瓣电影数据进行综合分析与可视化展示,构建一个基于Python的大数据可视化系统。通过数据爬取收集、清洗、分析豆瓣电影数据,我们提供了一个全面的电影信息平台,为用户提供深入了解电影产业趋势、影片评价与票房表现的工具。项目的关键步骤包括数据采集、数据清洗、数据分析与可视化展示。经过对一系列测试结果的有效分析,本平台开发系统符合用户的要求和需求。所有的基本功能齐全,可视化展示效果好,服务运行稳定,操作起来简单方便,测试系统性能、整体设计和代码逻辑都很Nice!

2023-12-06 19:20:10 3773 54

原创 大数据机器学习——基于Django机器学习算法房源可视化分析推荐系统的设计与实现

基于Django协同过滤算法的房可视化分析推荐系统结合了大数据爬虫、机器学习算法、数据分析和数据可视化技术,旨在提供对房屋信息的全面分析和个性化推荐。系统的前端采用了HTML、CSS 和 JavaScript 技术,利用 Echarts实现数据可视化,并整合了百度地图的热力图功能,以更直观的方式展示数据。后端部分完全基于Django 框架开发,使用 MySQL作为主要数据库存储数据。推荐系统采用了协同过滤算法,其中包括基于用户行为和基于物品相似性的推荐算法,以提供用户个性化的房屋推荐。

2023-12-04 12:10:26 1854 20

原创 大数据知识图谱——基于知识图谱+深度学习的大数据(KBQA)NLP医疗知识问答可视化系统(全网最详细讲解及源码/建议收藏)

通过搭建一个医疗领域知识图谱,并以该知识图谱完成自动问答与分析服务。 基于知识图谱+flask的KBQA医疗问答系统以neo4j作为存储,基于传统规则的方式完成了知识问答,并最终以关键词执行cypher查询,并返回相应结果查询语句作为问答。后面我又设计了一个简单的基于 Flask 的聊天机器人应用,利用nlp自然语言处理,通过医疗AI助手根据用户的问题返回结果,用户输入和系统返回的输出结果都会一起自动存储到sql数据库。后面又封装了深度学习模型完成一个完整基于深度学习知识图谱问答可视化系统。

2023-02-21 20:45:00 22161 175

原创 大数据技术之SparkSQL(超级详细)

Spark SQL是Spark用来处理结构化数据的一个模块,它提供了2个编程抽象:DataFrame和DataSet,并且作为分布式SQL查询引擎的作用。它是将Hive SQL转换成MapReduce然后提交到集群上执行,大大简化了编写MapReduc的程序的复杂性,由于MapReduce这种计算模型执行效率比较慢。所以Spark SQL的应运而生,它是将Spark SQL转换成RDD,然后提交到集群执行,执行效率非常快!

2023-01-11 20:07:06 26607 2

原创 图数据库Neo4j实战(全网最详细教程)

知识图谱,作为人工智能和语义网技术的重要组成部分,其核心在于将现实世界的对象和概念以及它们之间的多种关系以图形的方式组织起来。它不仅仅是一种数据结构,更是一种知识的表达和存储方式,能够为机器学习提供丰富、结构化的背景知识,从而提升算法的理解和推理能力。在人工智能领域,知识图谱的重要性不言而喻。它提供了一种机器可读的知识表达方式,使计算机能够更好地理解和处理复杂的人类语言和现实世界的关系。通过构建知识图谱,人工智能系统可以更有效地进行知识的整合、推理和查询,从而在众多应用领域发挥重要作用。

2023-01-07 19:12:42 30811 5

原创 超详细版本|Linux Centos7从零搭建Hadoop集群及运行MapReduce分布式集群案例(全网最详细教程!)

花了快2小时的超详细版本的Linux从零搭建Hadoop集群(CentOS7+hadoop 3.2.0+JDK1.8+Mapreduce完全分布式集群案例+详细源码图文讲解)终于整理完成了!里面有详细的代码讲解及图文操作,能够更好的帮助大家搭建,希望此教程对各位有所帮助,这些都已经试过水了,各位环境配置和操作没问题的话,基本都能部署完成,我这里部署了一个从机node1节点,可以根据自己需要增加3台或者更多node节点,节点配置信息修改的操作都是一样的。祝各位部署一切顺利!

2022-11-20 14:23:08 6863 21

原创 大数据区块链——基于hyperleger fabric区块链的校园化妆品交易平台搭建(超详细讲解及源码)

搭建一个基于Fabirc区块链的化妆品二手交易平台,学生以学院为单位(=>Org=>peer节点)加盟该平台;学生使用客户端连接本组织的peer节点参与交易。可以售卖化妆品、也可以购买化妆品;阅读过管理员平台公告后进入登录页面,学生通过学号认证后通过登录,学生在个人中心可以查看所有可交易的化妆品也可以查看自己的交易情况是否已经完成,也可以注册平台个人账号进行商品评论和交流查看个人信息,不但可以交易平台的资产也可以添加我的售卖,自己成为卖家;用户可以根据自己的需求选择不同的化妆品类型比如口红、香水、面部护理等

2022-11-08 23:54:58 6325 22

原创 Docker环境部署Hadoop并使用docker构建spark运行案列(全网最详细教程)

本文主要是Docker部署hadoop 和使用docker构建spark运行环境,里面有详细的安装配置教程和操作说明,环境没问题的话,按照操作基本都能部署完成和运行,后面也有一些案列可以帮助更好的操作和理解hadoop和spark运行原理。

2022-11-04 17:58:00 7018

原创 大数据机器学习:常见模型评估指标

模型评估是指在机器学习中,对于一个具体方法输出的最终模型,使用一些指标和方法来评估它的泛化能力。这一步通常在模型训练和模型选择之后,正式部署模型之前进行。模型评估不针对模型本身,而是针对问题和数据,因此可以用来评价不同方法的模型的泛化能力,以此决定最终模型的选择。

2024-04-29 12:54:04 1323 20

原创 大数据目标检测识别:从滑动窗口到YOLO、Transformer目标检测的技术革新

本篇文章全面回顾了目标检测技术的演变历程,从早期的滑动窗口和特征提取方法,到深度学习的兴起,尤其是CNN在目标检测中的革命性应用,再到近年来YOLO系列和Transformer在这一领域的创新实践。这一旅程不仅展示了目标检测技术的发展脉络,还反映了计算机视觉领域不断进步的动力和方向。技术领域的一个独特洞见是,目标检测的发展与计算能力的提升、数据可用性的增加、以及算法创新紧密相关。从早期依赖手工特征的方法,到今天的深度学习和Transformer,我们看到了技术演进与时代背景的深度融合。

2024-04-29 12:45:25 940

原创 大数据深度学习:基于Tensorflow深度学习卷积神经网络CNN算法垃圾分类识别系统

随着社会的发展和城市化进程的加速,垃圾分类已经成为了环境保护和可持续发展的重要课题。然而,传统的垃圾分类方法通常依赖于人工识别,效率低下且易出错。因此,本项目旨在利用大数据和深度学习技术,构建一个基于 TensorFlow 深度学习的神经网络 CNN(Convolutional Neural Network)算法垃圾分类识别系统,以实现自动化高效的垃圾分类。该系统将利用大数据集进行训练,通过深度学习模型提取垃圾图像的特征,从而实现对垃圾进行分类。

2024-04-11 18:16:22 1697 24

原创 大数据舆情评论数据分析:基于Python微博舆情数据爬虫可视化分析系统(NLP情感分析+爬虫+机器学习)

基于Python的微博舆情数据爬虫可视化分析系统,结合了NLP情感分析、爬虫技术和机器学习算法。该系统的主要目标是从微博平台上抓取实时数据,对这些数据进行情感分析,并通过可视化方式呈现分析结果,以帮助用户更好地了解舆情动向和情感倾向。系统首先利用爬虫技术实时抓取微博平台上的相关数据,包括文本内容、评论、转发等信息。接着,应用NLP情感分析技术对这些数据进行情感倾向的判断,识别出其中的正面、负面和中性情绪。随后,通过机器学习算法对情感数据进行分类和聚类分析,以发现潜在的规律和趋势。

2024-03-29 13:46:36 3843 12

原创 大数据云计算 - 弹性计算技术全解与实践

弹性计算是一种计算模型,它允许系统根据需要动态地分配和回收计算资源。与传统的、固定的硬件资源不同,弹性计算能够迅速适应业务或应用的不断变化的需求。云计算和弹性计算服务(ECS)已经深刻地改变了我们构建和运行应用的方式。从基础概念、核心组件,到选型考虑、实践案例和高级优化实践,每一环节都有其独特的挑战和机会。但在这个多元复杂的技术领域中,一些共通的主题和洞见仍然显而易见。

2024-02-21 22:32:33 1202 14

原创 深度学习自然语言处理(NLP)模型BERT:从理论到Pytorch实战

BERT(Bidirectional Encoder Representations from Transformers)是一种基于深度学习的自然语言处理(NLP)模型。它是由Google在2018年提出的,采用了Transformer架构,并在大规模语料库上进行了预训练。BERT的特点之一是其双向(Bidirectional)处理能力,它能够同时考虑到句子中所有单词的上下文,而不仅仅是单词之前或之后的部分。这种双向性使得BERT在许多NLP任务中表现出色,例如文本分类、问答和命名实体识别等。

2024-02-09 19:53:48 2836 34

原创 解决登录Django后台管理时候系统显示:127.0.0.1 拒绝了我们的连接请求(亲测有效!)

今天在用Django框架帮别人做一个基于python机器学习抖音短视频推荐系统项目时候无法正常显示系统功能页面,进入Django后台显示:`127.0.0.1 拒绝了我们的连接请求`,所有工具栏点开页面都是不能正常请求,显示错误信息。把里面的`'django.middleware.clickjacking.XFrameOptionsMiddleware'`,注释或者删除即可。这段代码的作用是将Django框架的点击劫持防护中间件添加到中间件处理链中,以提高应用的安全性。

2024-02-02 19:40:02 1262 15

原创 大数据期望最大化(EM)算法:从理论到实战全解析

期望最大化算法(Expectation-Maximization Algorithm,简称EM算法)是一种迭代优化算法,主要用于估计含有隐变量(latent variables)的概率模型参数。它在机器学习和统计学中有着广泛的应用,包括但不限于高斯混合模型(Gaussian Mixture Model, GMM)、隐马尔可夫模型(Hidden Markov Model, HMM)以及各种聚类和分类问题。

2024-01-27 18:05:51 1955 24

原创 大数据关联规则挖掘:Apriori算法的深度探讨

Apriori算法是一种用于挖掘数据集中频繁项集的算法,进而用于生成关联规则。这种算法在数据挖掘、机器学习、市场篮子分析等多个领域都有广泛的应用。关联规则挖掘是数据挖掘中的一个重要分支,其目标是发现在一个数据集中变量间存在的有趣的关联或模式。假设在一个零售商的交易数据中,如果客户购买了啤酒,他们也很有可能购买薯片。这里的“啤酒”和“薯片”就形成了一个关联规则。频繁项集是在数据集中出现次数大于或等于最小支持度(Minimum Support Threshold)的项的集合。

2024-01-21 16:24:47 1554 22

原创 大数据回归算法全解析:一文读懂机器学习中的回归模型

回归问题是预测一个连续值的输出(因变量)基于一个或多个输入(自变量或特征)的机器学习任务。换句话说,回归模型尝试找到自变量和因变量之间的内在关系。小规模数据集:样本数量较少(通常小于 1000)。大规模数据集:样本数量较多(通常大于 10000)。鲁棒性是模型对于异常值或噪声的抗干扰能力。如果因变量和自变量之间的关系不能通过直线来合理描述,则称为非线性关系。解释性是指模型能否提供直观的解释,以便更好地理解模型是如何做出预测的。数据质量是指数据的准确性、完整性和一致性。

2024-01-21 16:21:06 1357 2

原创 从规则到神经网络:机器翻译技术的演化之路

机器翻译(Machine Translation, MT)是人工智能领域的一项关键技术,旨在实现不同语言之间的自动翻译。自从20世纪中叶首次提出以来,机器翻译已从简单的字面翻译演变为今天高度复杂和精准的语义翻译。这项技术的发展不仅彻底改变了全球信息交流的方式,而且对于经济、政治和文化交流产生了深远影响。在探讨了机器翻译的历史、核心技术、神经机器翻译的深入分析、模型优化与挑战,以及实际应用与案例后,我们可以总结出一些独特的洞见,这些洞见不仅彰显了机器翻译技术的成就和潜力,也指出了未来的发展方向。

2024-01-20 16:11:19 1573 15

原创 大数据MapReduce:从原理到实战的全面指南

MapReduce是一种编程模型,用于大规模数据集(特别是非结构化数据)的并行处理。这个模型的核心思想是将大数据处理任务分解为两个主要步骤:Map和Reduce。Map阶段:接受输入数据,并将其分解成一系列的键值对。Reduce阶段:处理由Map阶段产生的键值对,进行某种形式的聚合操作,最终生成输出结果。这两个阶段的组合使得MapReduce能够解决一系列复杂的数据处理问题,并可方便地进行分布式实现。通过自定义Partitioner,你可以控制数据的分布。

2024-01-20 16:06:30 1483 2

原创 大数据深度学习ResNet深度残差网络详解:网络结构解读与PyTorch实现教程

深度残差网络(Deep Residual Networks,简称ResNet)自从2015年首次提出以来,就在深度学习领域产生了深远影响。通过一种创新的“残差学习”机制,ResNet成功地训练了比以往模型更深的神经网络,从而显著提高了多个任务的性能。深度残差网络通过引入残差学习和特殊的网络结构,解决了传统深度神经网络中的梯度消失问题,并实现了高效、可扩展的深层模型。梯度消失问题发生在神经网络的反向传播过程中,具体表现为网络中某些权重的梯度接近或变为零。这导致这些权重几乎不会更新,从而阻碍了网络的训练。

2024-01-14 00:17:39 1738 4

原创 大数据深度学习长短时记忆网络(LSTM):从理论到PyTorch实战演示

LSTM的逻辑结构通过其独特的门控机制为处理具有复杂依赖关系的序列数据提供了强大的手段。其对信息流的精细控制和长期记忆的能力使其成为许多序列建模任务的理想选择。了解LSTM的这些逻辑概念有助于更好地理解其工作原理,并有效地将其应用于实际问题。我们首先定义一个LSTM类,该类使用PyTorch的nn.Module作为基类。out, _ = self.lstm(x) # LSTM层out = self.fc(out[:, -1, :]) # 全连接层return outinput_size。

2024-01-08 13:20:20 2355 24

原创 Java后端开发——Mybatis实验

在项目的src/main/java目录下创建com.javaweb.pojo包,在com.javaweb.pojo包下创建User类,该类用于封装User对象的属性。在项目的src目录下创建数据库连接的配置文件,这里将其命名为db.properties,在该文件中配置数据库连接的参数。在映射文件CustomerMapper.xml中,添加使用元素执行动态SQL元素,测试并显示结果。在映射文件CustomerMapper.xml中,添加使用元素执行动态SQL元素,测试并显示结果。

2024-01-08 12:49:10 1478 2

原创 Java后端开发——SSM整合实验

创建名称为JdbcConfig的类,用于获取数据库连接信息并定义创建数据源的对象方法,并定义getDataSource()方法,用于创建DruidDataSource对象。id=1,页面显示效果如图所示。6.创建名称为BookService的业务层接口,在BookService接口中定义findBookById()方法,通过id获取对应的Book信息。4.创建名称为BookMapper的持久层接口,在BookMapper接口中定义findBookById()方法,通过图书id获取对应的图书信息。

2024-01-08 12:34:59 1336 2

原创 Java后端开发——Ajax、jQuery和JSON

Ajax全称是Asynchronous Javascript and XML,即异步的JavaScript和 XML。Ajax是一种Web应用技术,该技术是在JavaScript、DOM、服务器配合下,实现浏览器向服务器发送异步请求。Ajax异步请求方式不向服务器发出请求,会得到数据后再更新页面(通过DOM操作修改页面内容),整个过程不会发生页面跳转或刷新操作。传统请求方式和Ajax异步请求方式区别。

2024-01-05 13:29:13 1809 23

原创 Java后端开发——Spring实验

Spring框架是一个开放源代码的J2EE应用程序框架,由Rod Johnson发起,是针对bean的生命周期进行管理的轻量级容器(lightweight container)。 Spring解决了开发者在J2EE开发中遇到的许多常见的问题,提供了功能强大IOC、AOP及Web MVC等功能。Spring可以单独应用于构筑应用程序,也可以和Struts、Webwork、Tapestry等众多Web框架组合使用,并且可以与 Swing等桌面应用程序AP组合。因此, Spring不仅仅能应用于J2EE应用程序之

2024-01-03 23:04:29 2666 21

原创 机器学习与深度学习——使用paddle实现随机梯度下降算法SGD对波士顿房价数据进行线性回归和预测

使用Paddle实现随机梯度下降(SGD)算法对波士顿房价数据进行线性回归的训练,给出每次迭代的权重、损失和梯度,并进行房价预测值与真实房价值对比。使用Paddle实现随机梯度下降(SGD)算法对波士顿房价数据进行线性回归的训练,给出每次迭代的权重、损失和梯度,并进行房价预测值与真实房价值对比。1、导入必要的库和模块:PaddlePaddle深度学习框架、numpy、os等常用的包和库。将得到的预测结果和真实标签值进行比较,并输出预测房价的结果和真实房价结果。在训练结束后,保存训练好的模型参数到文件中。

2024-01-02 19:45:41 1566 8

原创 大数据机器学习GAN:生成对抗网络GAN全维度介绍与实战

本文为生成对抗网络GAN的研究者和实践者提供全面、深入和实用的指导。通过本文的理论解释和实际操作指南,读者能够掌握GAN的核心概念,理解其工作原理,学会设计和训练自己的GAN模型,并能够对结果进行有效的分析和评估。生成对抗网络(GAN)是深度学习的一种创新架构,由Ian Goodfellow等人于2014年首次提出。其基本思想是通过两个神经网络,即生成器(Generator)和判别器(Discriminator),相互竞争来学习数据分布。生成器:负责从随机噪声中学习生成与真实数据相似的数据。判别器。

2024-01-01 14:51:36 2503 31

原创 大数据前馈神经网络解密:深入理解人工智能的基石

前馈神经网络(Feedforward Neural Network, FNN)是神经网络中最基本和经典的一种结构,它在许多实际应用场景中有着广泛的使用。在本节中,我们将深入探讨FNN的基本概念、工作原理、应用场景以及优缺点。前馈神经网络是一种人工神经网络,其结构由多个层次的节点组成,并按特定的方向传递信息。与之相对的是递归神经网络,其中信息可以在不同层之间双向传递。由输入层、一个或多个隐藏层和输出层组成。信息仅在一个方向上流动,从输入层通过隐藏层最终到达输出层,没有反馈循环。

2023-12-28 17:10:06 2318 32

原创 一文详解自然语言处理两大任务与代码实战:NLU与NLG

自然语言处理(NLP)涵盖了从基础理论到实际应用的广泛领域,本文深入探讨了NLP的关键概念,包括词向量、文本预处理、自然语言理解与生成、统计与规则驱动方法等,为读者提供了全面而深入的视角。自然语言处理的主要任务是让计算机能够像人类一样理解和生成自然语言。它能够让机器读懂人类的语言,使得人们与计算机的交互更加自然流畅。这不仅可以大大提高人机交互的效率,而且也为许多行业如客服、医疗、教育等提供了极大的便利。

2023-12-28 15:54:02 1105 2

基于Python Django招聘数据分析可视化预测系统 .zip

基于Python Django招聘数据分析可视化预测系统系统提供了一种创新的解决方案,对于社会具有广泛的可行性。通过自动化数据爬取和分析,系统能够为求职者和招聘方提供更准确、及时的信息,促进了人才与岗位的匹配,提升了招聘效率。系统提供的数据可视化功能有助于深入理解招聘市场的趋势和特点,为政府部门、企业决策者以及研究人员提供了有价值的参考,有助于优化就业政策和人才培养方案。

2024-05-09

基于SpringBoot+Vue的学生选课管理系统(完整前后端源码及数据库) .zip

技术栈 后端技术栈: Spring Boot:基于 Java 的后端框架,提供了快速构建应用程序的能力。 Spring Security:用于身份验证和授权的安全框架。 Spring Data JPA:简化数据访问层的开发,支持对数据库的操作。 MySQL:关系型数据库,用于存储应用程序的数据。 前端技术栈: Vue.js:流行的 JavaScript 前端框架,用于构建用户界面。 Element UI:基于 Vue.js 的组件库,提供丰富的 UI 组件和样式。 Axios:用于处理 HTTP 请求的 JavaScript 库。 Vue Router:用于实现前端路由的库,支持页面之间的导航。 4. 部署和运行 后端部署:将 Spring Boot 应用程序打包为可执行的 JAR 文件,并部署到服务器上。 前端部署:使用 npm 打包 Vue.js 应用,并将生成的静态文件部署到 Web 服务器上。 数据库部署:在 MySQL 数据库中创建相应的数据库和表,并配置应用程序的数据库连接信息。 运行应用:启动后端应用程序,并在浏览器中打开前端页面以访问应用程序。

2024-03-02

Maven所需的依赖sqljdbc4-4.0.zip(解决Missing artifact com.microsoft.sql)

解决Missing artifact com.microsoft.sqlserver:sqljdbc4:jar:4.0问题 所需的sqljdbc4-4.0.jar包 解压放到F:\maven-3.9.6\apache-maven-3.9.6\repository\com\microsoft\sqlserver目录下,然后重启idea,重新加载maven依赖就可了。

2024-01-19

大数据技术之数据安全与网络安全-CMS靶场(文章管理系统)实训

在当今数字化时代,大数据技术的迅猛发展带来了前所未有的数据增长,同时也催生了对数据安全和网络安全的更为迫切的需求。本篇博客将聚焦于大数据技术背景下的数据安全与网络安全,并通过CMS(文章管理系统)靶场实训,深入探讨相应的解决方案与应对策略。 数据与网络安全作为保障大数据系统正常运行的基石,同样备受关注。今天写博客时候发现自己很久没更新数据安全与网络安全方面的内容了,于是花了点时间写一篇CMS靶场实训博客。本文通过CMS靶场实训,深入分析CMS系统的安全漏洞,探讨防范措施,提供实战经验和攻防能力,有助于加强大数据与网络安全意识。 一、实训项目要求 环境部署,正确部署CMS网站并运行。 通过工具,列出CMS网站的文件目录结构。 搜集CMS网站的各项信息. 通过工具或代码审计,详细列出CMS 网站的漏洞缺陷。 给出CMS网站的加固方案。 二、环境 系统环境:Windows10 IP:192.168.95.200(根据实际情况) 虚拟机可联网 过程与分析 1.环境部署,正确部署CMS网站并运行。 Phpstudy版本为2016版本,解压缩文件并下载安装 ————————————————

2024-01-10

Java后端开发-Spring库.zip

Spring所需要的jar包都在里面。 内容: 一、Spring入门程序 1.创建项目,Spring依赖包。 2.创建JavaBean:HelloSpring 3.编写applicationContext.xml配置文件 4.测试:启动Spring,获取Hello示例。 二、Spring基于XML装配实验 说明:使用Spring IOC模拟实现账户添加功能程序 1.创建JavaBean类:Account.java 2.创建DAO类: AccountDao.java,模拟账户添加操作 3.创建Service类:AccountService.java,模拟账户添加业务 4.创建Controller类:AccountController.java,在Web下模拟账户添加请求。 5.编写applicationContext.xml配置文件,Dao装配到Service,Service装配到Controller

2024-01-03

机器学习与深度学习-使用paddle实现随机梯度下降算法SGD对波士顿房价数据进行线性回归和预测.zip

import paddle from paddle.nn import Linear import paddle.nn.functional as F import numpy as np import os import random def load_data(): # 从文件导入数据 datafile = './work/housing.data' data = np.fromfile(datafile, sep=' ', dtype=np.float32) # 每条数据包括14项,其中前面13项是影响因素,第14项是相应的房屋价格中位数 feature_names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', \ 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV'] feature_num = len(feature_names) # 将原始数据进行Resh

2024-01-02

机器学习波士顿房价数据集.zip

机器学习波士顿房价数据集 HousingData.csv housing.data CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT MEDV 0.00632 18 2.31 0 0.538 6.575 65.2 4.09 1 296 15.3 396.9 4.98 24 0.02731 0 7.07 0 0.469 6.421 78.9 4.9671 2 242 17.8 396.9 9.14 21.6 0.02729 0 7.07 0 0.469 7.185 61.1 4.9671 2 242 17.8 392.83 4.03 34.7 0.03237 0 2.18 0 0.458 6.998 45.8 6.0622 3 222 18.7 394.63 2.94 33.4 0.06905 0 2.18 0 0.458 7.147 54.2 6.0622 3 222 18.7 396.9 NA 36.2 0.02985 0 2.18 0 0.458 6.43 58.7 6.0622 3 222 18.7 394.12

2024-01-02

机器学习与深度学习-通过决策树算法分类鸢尾花数据集iris求出错误率画出决策树并进行可视化(完整源码+文档)0.zip

1、先载入iris数据集 Load Iris data 2、分离训练集和设置测试集split train and test sets 3、使用决策树模型进行训练Train using clf 4、画出决策树 5、然后二维进行可视化处理Visualization 最后通过绘图决策平面plot decision plane 1、通过决策树算法对iris数据集前两个维度的数据进行模型训练并求出错误率,最后进行可视化展示数据区域划分: from sklearn import datasets import numpy as np ### Load Iris data 加载数据集 iris = datasets.load_iris() x = iris.data[:,:2]#前2个维度 # x = iris.data y = iris.target print("class labels: ", np.unique(y)) x.shape y.shape ### split train and test sets from sklearn.model_selection import train

2024-01-02

大数据机器学习之主成分分析 Iris 数据集.zip

from sklearn import datasets import numpy as np iris = datasets.load_iris() x = iris.data[:,:4]#前4个维度 # x = iris.data y = iris.target print("class labels: ", np.unique(y)) from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, stratify=y) print("Labels count in y:", np.bincount(y)) print("Labels count in y_train:", np.bincount(y_train)) print("Labels count in y_test:", np.bincount(y_test)) from sklearn.preprocessing import St

2024-01-02

机器学习与深度学习-自定义函数进行线性回归模型分析(波士顿房价).zip

1、通过自定义函数进行线性回归模型对boston数据集前两个维度的数据进行模型训练并画出SSE和Epoch曲线图,画出真实值和预测值的散点图,最后进行二维和三维度可视化展示数据区域。 2、通过自定义函数进行线性回归模型对boston数据集前四个维度的数据进行模型训练并画出SSE和Epoch曲线图,画出真实值和预测值的散点图,最后进行可视化展示数据区域。 1、先载入boston数据集 Load Iris data 2、分离训练集和设置测试集split train and test sets 3、对数据进行标准化处理Normalize the data 4、自定义损失函数 5、使用梯度下降算法训练线性回归模型 6、初始化模型参数 7、训练模型 8、对训练集和新数据进行预测 9、画出SSE和Epoch折线图 10、画出真实值和预测值的散点图 进行可视化import pandas as pd import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D # 读取数据

2024-01-02

机器学习与深度学习-通过奇异值分解算法压缩图片(完整源码).zip

1、导入所需的库; 2、定义压缩函数 zip_img_by_svd 3、初始化压缩后的图片 zip_img 为全零数组 4、对每个通道进行 SVD 分解并进行归一化处理 5、将压缩后的近似矩阵乘以 255 并转换为 uint8 类型,并将原图像压缩成低维矩阵。 展示压缩前后的图像 程序代码 1、通过奇异值分解进行图片压缩,绘制出压缩后的图片和计算出压缩率。 #导入所需的库 import numpy as np import matplotlib.pyplot as plt #定义压缩函数 zip_img_by_svd ,函数的输入参数为待压缩的图片 img,绘图所需的参数 plotId,以及压缩比率 rate(默认值为 0.8) def zip_img_by_svd(img, plotId, rate=0.8): #初始化压缩后的图片 zip_img 为全零数组,并初始化三个变量 u_shape、sigma_shape、vT_shape 为零。u_shape、sigma_shape、vT_shape 分别表示 u、sigma、vT 三个矩阵的形状 zip_img = np.ze

2024-01-02

机器学习与深度学习-通过SVM线性支持向量机分类鸢尾花数据集iris求出错误率并可视化.zip

1、先载入iris数据集 Load Iris data 2、分离训练集和设置测试集split train and test sets 3、对数据进行标准化处理Normalize the data 4、使用知识向量机模型进行训练Train using SVM 5、然后进行可视化处理Visualization 6、最后通过绘图决策平面plot decision plane 程序代码 1、通过知识向量机算法对iris数据集前两个维度的数据进行模型训练并求出错误率,最后进行可视化展示数据区域划分: ```bash from sklearn import datasets import numpy as np ### Load Iris data 数据加载 iris = datasets.load_iris() x = iris.data[:,:2]#前2个维度 # x = iris.data y = iris.target print("class labels: ", np.unique(y)) x.shape y.shape ### split train and test se

2024-01-02

大数据开发常用包.zip

大数据开发常用的包,需要可以直接下载。

2024-01-01

基于大数据区块链房地产交易系统(完整源码).zip

本项目使用 Hyperledger Fabric 构建底层区块链网络, go 编写智能合约,应用层使用 gin+fabric-sdk-go ,前端使用 vue+element-ui ## 环境要求 安装了 Docker 和 Docker Compose 的 Linux 环境 ## 目录结构 - `application/server` : `fabric-sdk-go` 调用链码(即智能合约),`gin` 提供外部访问接口(RESTful API) - `application/web` : `vue` + `element-ui` 提供前端展示页面 - `chaincode` : go 编写的链码(即智能合约) - `network` : Hyperledger Fabric 区块链网络配置 ## 功能流程 管理员为用户业主创建房地产。 业主查看名下房产信息。 业主发起销售,所有人都可查看销售列表,购买者购买后进行扣款操作,并等待业主确认收款,交易完成后,更新房产持有人。在有效期期间可以随时取消交易,有效期到期后自动关闭交易。 业主发起捐赠,指定受赠人,

2023-12-30

python爬虫-股票数据.zip

import json import os import pandas as pd import requests session = requests.session() # 数据格式化 def pd_unit(newArr): if float(newArr) >= 100000000 or float(newArr) <= -100000000: result = format(float(newArr) / 100000000, '.2f') + '亿' else: result = format(float(newArr) / 10000, '.2f') + '万' return result # 获取K线数据 def getLinesData(code: str, id: str): # beg和end可以调整数据区间 params = f"fields1=f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12,f13&" \ "fields2=f5

2023-12-30

数字孪生 智慧城市电力管理中心部署Vue源码.zip

数字孪生 智慧城市电力管理中心部署全局光照、云、雨、雪、雾、大气、海水,超写实还原数字李生场景。应用领域涉及智慧城市、数字乡村、智慧园区、工业生产、交通、水利、电力、军事、应急、场馆等全行业场景。支持(DOM、DEM、SHPDWGVTPKRvtDgn\IFC\Nwd\Pmodel CatProduct 3DXMLstep\SKPOSGB\Las) 主流格式 键入库等全局光照、云、雨、雪、雾、大气、海水,超写实还原数字李生场景数字孪生,智慧园区,智慧工厂项目设计。虚幻引擎场景建模,UI设计,可视化模拟,人机交互,VR工艺模拟。数字孪生是充分利用物理模型、传感器更新、运行历史等数据,集成多学科、多物理量、多尺度、多概率的仿真过程,在虚拟空间中完成映射,从而反映相对应的实体装备的全生命周期过程。数字孪生是一种超越现实的概念,可以被视为一个或多个重要的、彼此依赖的装备系统的数字映射系统。 数字孪生是个普遍适应的理论技术体系,可以在众多领域应用,在产品设计、产品制造、医学分析、工程建设等领域应用较多。在国内应用最深入的是工程建设领域,关注度最高、研究最热的是智能制造领域。

2023-12-30

HTML+CSS+JavaScript 400源码套装.rar

关于前端设计的各种源码网页动态设计交互这里面都有,什么是HTML? HTML是超文本标记语言(Hyper Text Markup Language),一种纯文本类型的语言,用来设计网页的标记语言,用该语言编写的文件以.html或者.htm为后缀,由浏览器解释执行,在HTML的页面上可以嵌套脚本语言编写程序段,如JavaScript HTML标签 HTML标签通常也被称为HTML标记,HTML元素;HTML标签是由尖括号包围的关键字,比如<html>,HTML标签通常是成对出现的,比如<b></b>,标签对中的第一个标签为开始标签,第二个标签为结束标签,开始标签和结束标签也被称为开放标签和闭合标签 HTML注释: <!–注释内容 --> 可以将注释插入 HTML 代码中,这样可以提高其可读性,使代码更易被人理解。浏览器会忽略注释,也不会显示它们 HTML文档类型: <!DOCTYPE>声明:HTML由多个不同的版本,只有完全明白页面中的使用的确切HTML版本,浏览器才能完全正确的显示HTML页面,这就是<!DOCTYPE>的意义; <!DOCTYPE>不是HTML的标签,它为

2023-12-27

大数据SpringBoot学生在线管理系统(详细文档+完整源码+部署视频).zip

2 开发技术介绍 2.1 SpringBoot框架 Spring Boot是Pivotal团队的一个新框架,旨在简化新Spring应用程序的初始设置和开发。该框架使用特定的配置方法,无需开发人员定义样板配置。通过这种方式,Spring Boot旨在成为蓬勃发展的快速应用程序开发领域的领导者。 Spring Boot特点: 1、创建一个单独的Spring应用程序: 2、嵌入式Tomcat,无需部署WAR文件: 3、简化Maven配置; 4、自动配置Spring; 5、提供生产就绪功能,如指标,健康检查和外部配置: 6、绝对没有代码生成和XML的配置要求 安装步骤: 最基本的是,Spring Boot是一个可以被任何项目的构建系统使用的库集合。 为简单起见,该框架还提供了一个命令行界面,可用于运行和测试Bot应用程序。可以从spring存储库手动下载和安装框架的已发布版本,包括集成的CLI(命令行界面)。 更简单的方法是使用Groovy enVironment Manager (GVM) ,它负责处理Boot版本的安装和管理。可以从GVM命令行GVM install springboot

2023-12-26

大数据SpringBoot酒店客房管理系统(详细文档+完整源码+部署视频).zip

2 开发技术介绍 2.1 SpringBoot框架 Spring Boot是Pivotal团队的一个新框架,旨在简化新Spring应用程序的初始设置和开发。该框架使用特定的配置方法,无需开发人员定义样板配置。通过这种方式,Spring Boot旨在成为蓬勃发展的快速应用程序开发领域的领导者。 Spring Boot特点: 1、创建一个单独的Spring应用程序: 2、嵌入式Tomcat,无需部署WAR文件: 3、简化Maven配置; 4、自动配置Spring; 5、提供生产就绪功能,如指标,健康检查和外部配置: 6、绝对没有代码生成和XML的配置要求 安装步骤: 最基本的是,Spring Boot是一个可以被任何项目的构建系统使用的库集合。 为简单起见,该框架还提供了一个命令行界面,可用于运行和测试Bot应用程序。可以从spring存储库手动下载和安装框架的已发布版本,包括集成的CLI(命令行界面)。 更简单的方法是使用Groovy enVironment Manager (GVM) ,它负责处理Boot版本的安装和管理。可以从GVM命令行GVM install springboot

2023-12-26

大数据SpringBoot进销存管理系统(详细文档+完整源码+部署视频).zip

1. **Controller**: - **位置**:`controller` 文件夹 - **作用**:控制器层,负责处理 HTTP 请求和响应。 - **详细解析**:Controller 接收来自前端的请求,根据业务逻辑调用相应的服务(Service),并返回相应的结果到前端。它负责处理路由、接收请求参数、调用适当的业务逻辑,并将结果转换为 HTTP 响应返回给客户端。在 Spring Boot 中,通常使用 `@RestController` 或 `@Controller` 注解来标识这些类。 2. **Service**: - **位置**:`service` 文件夹 - **作用**:业务逻辑层,实现具体的业务逻辑和功能。 - **详细解析**:Service 层是实现业务逻辑的地方,它通常包含了应用程序中的主要业务逻辑。这些类负责实现业务规则、处理数据逻辑、调用数据访问层(DAO/Repository),并封装数据传输给 Controller 层。在 Spring Boot 中,通常使用 `@Service` 注解标识这些类。 3.

2023-12-26

我的网盘网页设计(全资料完整源码+详细文档).zip

setCheckedAll()函数,用于检查所有的文件是否都被选中,并设置一个全选的复选框。该函数通过querySelectorAll方法选择所有的文件元素的复选框(即<i>元素),然后遍历每个复选框,如果有任意一个复选框未被选中,则将全选复选框的状态设置为未选中;否则,将全选复选框的状态设置为选中。这样,当用户手动选中某个文件时,全选复选框的状态也会相应地更新。 其次是deleteSelectedBtn.onclick事件处理函数,用于处理删除按钮的点击事件。该事件处理函数首先通过querySelectorAll方法选择所有的文件元素,然后使用forEach方法遍历每个文件元素。对于每个文件元素,如果其内部的复选框被选中,就会将该文件元素从DOM树中移除,从而实现删除选中的文件的功能。 可以实现方便的删除选中文件的功能,单点击全选,再点击删除“删除选中”即可删除全部,并且在选中文件时全选复选框的状态会自动更新。 js代码:(index.js:104~127行) //检查所有的文件是否都被选中,并设置一个全选的复选框。 function setCheckedAll() {

2023-12-26

图数据库neo4j实战完整资料.zip

随着社交、电商、金融、零售、物联网等行业的快速发展,现实社会织起了了一张庞大而复杂的关系网,传统数据库很难处理关系运算。大数据行业需要处理的数据之间的关系随数据量呈几何级数增长,急需一种支持海量复杂数据关系运算的数据库,图数据库应运而生。 世界上很多著名的公司都在使用图数据库,比如: 社交领域:Facebook, Twitter,Linkedin用它来管理社交关系,实现好友推荐零售领域:eBay,沃尔玛使用它实现商品实时推荐,给买家更好的购物体验金融领域:摩根大通,花旗和瑞银等银行在用图数据库做风控处理 汽车制造领域:沃尔沃,戴姆勒和丰田等顶级汽车制造商依靠图数据库推动创新制造解决方案电信领域:Verizon, Orange和AT&T 等电信公司依靠图数据库来管理网络,控制访问并支持客户 360 酒店领域:万豪和雅高酒店等顶级酒店公司依使用图数据库来管理复杂且快速变化的库存图数据库并非指存储图片的数据库,而是以图数据结构存储和查询数据。 图数据库是基于图论实现的一种NoSQL数据库,其数据存储结构和数据查询方式都是以图论为基础的,图数据库主要用于存储更多的连接数据。

2023-12-26

图数据库neo4j实战.docx

随着社交、电商、金融、零售、物联网等行业的快速发展,现实社会织起了了一张庞大而复杂的关系网,传统数据库很难处理关系运算。大数据行业需要处理的数据之间的关系随数据量呈几何级数增长,急需一种支持海量复杂数据关系运算的数据库,图数据库应运而生。 世界上很多著名的公司都在使用图数据库,比如: 社交领域:Facebook, Twitter,Linkedin用它来管理社交关系,实现好友推荐零售领域:eBay,沃尔玛使用它实现商品实时推荐,给买家更好的购物体验金融领域:摩根大通,花旗和瑞银等银行在用图数据库做风控处理 汽车制造领域:沃尔沃,戴姆勒和丰田等顶级汽车制造商依靠图数据库推动创新制造解决方案电信领域:Verizon, Orange和AT&T 等电信公司依靠图数据库来管理网络,控制访问并支持客户 360 酒店领域:万豪和雅高酒店等顶级酒店公司依使用图数据库来管理复杂且快速变化的库存图数据库并非指存储图片的数据库,而是以图数据结构存储和查询数据。 图数据库是基于图论实现的一种NoSQL数据库,其数据存储结构和数据查询方式都是以图论为基础的,图数据库主要用于存储更多的连接数据。

2023-12-26

JDBC技术全解.pptx

JDBC的全称是Java Database Connectivity即Java数据库连接。它是一套用于执行SQL语句的Java API。应用程序可通过这套API连接到关系型数据库,并使用SQL语句完成对数据库中数据的查询、更新、新增和删除操作。 不同种类的数据库(如MySQL、Oracle等)在内部处理数据的方式是不同的,如果直接使用数据库厂商提供的访问接口操作数据库,应用程序的可移植性就会变得很差。例如,用户当前在程序中使用的是MySQL提供的接口操作数据库,如果换成Oracle数据库,则需要重新使用Oracle数据库提供的接口,这样代码的改动量会非常大。有了JDBC后,这问题就不复存在了,因为它要求各个数据库厂商按照统一的规范提供数据库驱动,而在程序中由JDBC和具体的数据库驱动联系,所以用户就不必直接与底层的数据库交互,这使得代码的通用性更强。

2023-12-26

c3p0连接池所需的全部包.zip

C3P0是一个用于管理JDBC连接池的Java库。连接池是一种技术,它允许应用程序通过事先创建并维护一组数据库连接,而不是每次需要数据库访问时都重新创建一个新连接。这有助于提高性能,减少资源开销,以及更有效地管理数据库连接。 以下是使用C3P0连接池的一般步骤: 引入C3P0库:首先,你需要在项目中引入C3P0库。你可以通过在项目的构建工具(如Maven、Gradle等)中添加相应的依赖,或者将C3P0的JAR文件手动包含在项目中。 Maven 依赖: xml <dependency> <groupId>c3p0</groupId> <artifactId>c3p0</artifactId> <version>0.9.5.5</version> <!-- 请根据实际情况选择最新版本 --> </dependency> 配置C3P0连接池:在应用程序的配置文件中,你需要配置C3P0连接池的参数。这通常包括数据库的连接URL、用户名、密码,以及连接池的一些设置,如最小连接数、最大连接数等。

2023-12-26

javaweb商城实战学习案列.zip

项目概述:这个案例是一个实际的JavaWeb商城项目,涵盖了电商系统的一系列功能,如商品管理、用户注册登录、购物车管理、订单处理等。 技术栈:使用JavaWeb相关技术,包括Servlet、JSP、JavaBean等,以及数据库技术如MySQL等。前端可能使用HTML、CSS、JavaScript,可能还有一些框架或库。 功能模块:详细描述项目的各个功能模块,例如商品管理、用户管理、购物车、订单管理等,以及这些模块的具体实现方式。 数据库设计:包含数据库的设计结构,表关系图,以及可能的SQL脚本。这对于理解数据存储和检索的方式非常重要。 除了源代码之外,可能还提供了相关的学习资料,如项目文档、注释等,以帮助学习者更好地理解和使用这个案例。 这样的资源对于学习JavaWeb开发、实际项目经验的积累以及电商系统的构建都是非常有帮助的。确保在博客中提供清晰而详细的资源描述,以帮助读者正

2023-12-26

微信小程序-电影推荐小程序(完整源码+截图).zip

应用功能:该小程序包括电影推荐、搜索、电影详情、用户评价等功能。用户可以通过小程序浏览电影信息,获取推荐,以及参与互动。 技术栈:基于微信小程序框架开发,使用了WXML、WXSS、JavaScript等技术。后端可能采用云开发(Cloud Development)或其他后端服务。 电影数据:小程序连接了电影数据库或API,用于获取电影信息,包括电影名称、演员阵容、评分、上映日期等。 用户互动:用户可以通过小程序进行电影评价、添加收藏,或者分享电影推荐至社交媒体。 截图展示:提供了小程序的截图,展示了应用的主要界面和功能,帮助用户获得对应用外观和操作的直观认识。 完整源码:包含了小程序的完整源代码,包括前端和可能的后端代码,以及相关的配置文件。这有助于其他开发者学习和理解实现细节。

2023-12-25

基于Django大数据农产品可视化分析系统(完整源码+1w数据集+数据建模分析).zip

农产品数据分析及爬虫 # Create a boxplot using Seaborn and Matplotlib plt.figure(figsize=(8, 6)) sns.boxplot(y=df['最高价']) plt.title('Boxplot of Highest Prices') plt.xlabel('Prices') plt.ylabel('Highest Price') # Save the plot to a BytesIO object buffer = BytesIO() plt.savefig(buffer, format='png') buffer.seek(0) # Encode the bytes as a base64 string plot_data = base64.b64encode(buffer.getvalue()).decode() buffer.close() 这段代码使用Seaborn和Matplotlib创建了一个箱线图(boxplot)。以下是代码的解析: 1.plt.figure(figsize=(8, 6)): 这行代

2023-12-25

MongoDB下载需要的包

MongoDB(意为“Humongous”,巨大的)是一个开源的面向文档的NoSQL数据库系统,它使用BSON(Binary JSON)格式来存储数据。MongoDB的设计目标是为开发者提供一种灵活、可扩展且性能优越的数据库解决方案。以下是MongoDB的一些关键特点和详细讲解: 1. 面向文档的数据模型: MongoDB是一种面向文档的数据库,使用BSON格式来存储数据。文档是类似于JSON对象的数据结构,可以包含键值对、数组和嵌套文档。 文档的灵活性使得MongoDB适用于多样化的数据模型,且不需要提前定义表结构。 2. 集合和文档: 数据存储在集合(Collection)中,集合类似于关系型数据库中的表。 文档是MongoDB中的基本数据单元,类似于关系型数据库中的行。 3. 数据库查询语言: MongoDB支持强大的查询语言,可以进行复杂的查询和筛选。 查询语言使用JSON格式,使其易于理解和构建。 4. 索引支持: MongoDB支持索引,提高了查询性能。 支持单字段索引、复合索引等多种类型。 5. 自动分片和复制: MongoDB支持自动分片,可以水平扩展到多个服务器。

2023-12-25

基于Springboot宠物领养系统(视频+全源码资料).zip

系统功能:宠物领养系统包含用户注册、浏览可领养宠物、发布领养信息、评论和评价宠物、在线领养申请等功能。 技术栈:基于Spring Boot框架开发,使用了Spring的各种模块和特性,如Spring MVC、Spring Data JPA等。数据库可能是MySQL、PostgreSQL或者其他关系型数据库。 视频教程:视频包含系统的演示、开发过程中的关键步骤或者对系统功能的解释。可能会涵盖从环境搭建到实际编码的整个开发流程。 源码资料:提供系统的完整源代码,可能包括后端服务和前端界面(如果有的话)。这些源代码文件可能以Java或其他相关技术的文件格式存在。 这样的资源对于学习Spring Boot和系统设计、开发方面的知识会非常有帮助。

2023-12-25

基于Springboot饮食分享平台(全源码资料).zip

概述: 该资源是一个基于Spring Boot框架开发的饮食分享平台的全源码资料。它提供了一个完整的、可定制的饮食分享平台的实现,以帮助用户共享饮食经验、食谱和相关信息。 内容: 平台功能: 描述: 详细介绍了该饮食分享平台的功能和特点,包括用户注册登录、发布食谱、点赞和评论、浏览和搜索等功能。 资源: 提供平台功能列表和相关功能的详细说明文档。 技术栈和框架: 描述: 介绍了该平台所使用的技术栈和框架,包括Spring Boot、数据库(如MySQL或MongoDB)、前端框架等。 资源: 提供相关技术和框架的版本号、配置文件样例等信息。 数据库设计: 描述: 解释了平台所使用的数据库的设计结构,包括表结构、关系和字段说明。 资源: 提供数据库设计文档、SQL脚本或可视化数据库模型的截图。 源码结构: 描述: 详细说明了整个项目的源代码结构,包括各个模块、包、类的功能和关系。 资源: 提供源代码文件目录结构和主要文件的说明文档。 部署与运行: 描述: 提供关于如何部署和运行该饮食分享平台的说明,包括环境配置、依赖安装和启动步骤。 资源: 提供启动脚本、配置文件样例或详细

2023-12-25

基于Springboot学生成绩在线管理.zip

概述: 该资源介绍了一个采用Spring Boot框架开发的学生成绩在线管理系统。这个系统旨在提供学校、教育机构或教育者一个高效、易用的平台,用于管理学生成绩、监控学业进展以及提供实时的成绩报告。 内容: Spring Boot简介: 描述: 对Spring Boot框架进行简要介绍,说明为何选择Spring Boot作为系统的开发框架。 资源: 提供Spring Boot的基本信息和官方链接。 系统功能和特性: 描述: 详细列举系统提供的功能,例如学生成绩录入、查询、报告生成等。 资源: 提供系统的功能列表,并解释每个功能的用途。 技术栈: 描述: 介绍系统所采用的技术栈,包括数据库、前端框架等。 资源: 提供相关技术的链接和资源,以便读者深入学习。 数据库设计: 描述: 说明系统中学生成绩数据的数据库设计,包括表结构、关联等。 资源: 提供数据库设计文档或图表。 用户界面: 描述: 展示系统的用户界面,包括登录界面、学生成绩查看界面等。 资源: 提供用户界面截图或演示链接。 系统架构: 描述: 解释系统的整体架构,包括前后端的交互、数据流动等。 资源: 提供系统架构

2023-12-25

商城管理系统.zip

商城管理系统

2023-12-25

基于知识图谱的电影问答系统.7z

概述: 该资源介绍了一个创新性的电影问答系统,其核心基于知识图谱技术。知识图谱是一种将信息结构化并以图形方式表示的技术,它为电影领域的问答提供了更智能、准确的解决方案。这个系统允许用户通过自然语言提出问题,系统能够从庞大的电影知识图谱中提取相关信息并给予详尽的回答。 内容: 知识图谱技术简介: 描述: 对知识图谱的基本概念进行介绍,说明它如何在电影领域中发挥作用。 资源: 提供有关知识图谱技术的详细解释,并指向相关的学术资源或文献。 电影知识图谱构建: 描述: 详细说明构建电影知识图谱的方法,包括数据收集、实体识别、关系建模等步骤。 资源: 提供构建电影知识图谱所用工具、技术和数据源的信息。 自然语言处理(NLP)与问答系统: 描述: 解释系统如何利用自然语言处理技术理解用户提出的问题,并从知识图谱中检索相关信息。 资源: 提供有关NLP和问答系统的基本原理,并指向相关资源以深入了解。 系统工作流程: 描述: 介绍系统的工作流程,从用户提问到知识图谱检索和最终回答的过程。 资源: 提供系统工作流程图和示例,以便读者更好地理解系统的运作方式。 性能评估和优化:

2023-12-25

部署Vue必备 node安装包.zip

标题: 部署Vue必备 Node 安装包 概述: 该资源为Vue.js前端项目部署提供了必备的Node安装包。Node.js是一个基于Chrome V8引擎的JavaScript运行时,广泛用于构建可扩展的网络应用。在Vue.js项目中,Node.js通常用于安装和管理项目依赖,以及运行构建和开发服务器等任务。 内容: Node.js介绍: 描述: 介绍Node.js的基本概念和作用,特别是在前端项目中的重要性。 资源: 提供有关Node.js的基本信息和官方网站链接。 npm(Node包管理器): 描述: 介绍npm作为Node.js的官方包管理器,用于安装、共享、分发代码和管理项目依赖。 资源: 提供npm的基本用法和常用命令,以及npm的官方文档链接。 Node.js安装步骤: 描述: 提供Node.js安装的详细步骤,涵盖各个操作系统。 资源: 提供Node.js的官方下载链接和安装文档。 npm包管理: 描述: 解释如何使用npm安装、卸载和更新项目依赖。 资源: 提供常用的npm命令示例,以及npm包管理的最佳实践。

2023-12-25

基于大数据区块链农产品溯源系统.zip

系统概述: 描述:资源是一个基于大数据和区块链技术的农产品溯源系统。 目的:实现农产品生产过程的全程追溯,提高产品质量、安全性和透明度。 技术架构: 描述:详细说明系统采用的技术架构和相关技术。 资源: 大数据技术(例如,Hadoop、Spark等) 区块链平台(例如,Hyperledger Fabric、Ethereum等) 相关的数据库和存储技术 溯源流程: 描述:说明农产品从生产到消费的整个溯源流程。 资源: 农产品生产环节的数据采集 数据上传和存储的过程 溯源信息查询和展示 数据采集: 描述:说明系统如何收集农产品生产过程中的关键数据。 资源: 传感器、物联网设备等数据采集工具 生产环节中的关键数据点 区块链应用: 描述:阐述区块链技术在农产品溯源中的应用。 资源: 区块链智能合约的设计和实现 数据上链的过程 区块链的去中心化特性如何增强溯源的可信度 大数据分析: 描述:说明大数据技术如何用于对农产品数据进行分析。 资源: 大数据处理流程和算法 数据分析结果的展示和报告 安全性和隐私保护: 描述:强调系统对数据安全性和用户隐私的保护措施。 资源: 区块链的安全机制

2023-12-25

python获取-股票数据

用于获取股票市场数据的Python爬虫项目。该爬虫使用了Beautiful Soup和Scrapy等爬虫技术,从指定的股票网站或API获取实时和历史股票数据,包括股票价格、交易量等。爬取到的数据经过清洗和转换后,,方便进一步分析。项目提供了示例代码和演示,帮助用户理解如何运行爬虫。

2023-12-25

前端代码学习(HTML+CSS+JS进阶学习全资料)

这份前端学习资料包含了深入学习HTML、CSS和JavaScript的所有必要资源。其中,HTML模块涵盖了HTML基础语法、HTML5的新增功能以及表单设计和验证。CSS模块涵盖了CSS选择器和属性、各种布局技术,包括Flexbox和Grid,以及响应式设计原理。JavaScript模块包含了JavaScript语法和数据类型、DOM操作和事件处理,以及异步编程的重要概念,包括Promise和Async/Await。此外,该资料还包括关于Bootstrap框架的代码资料,涵盖了基础组件和样式,响应式设计的实践以及Bootstrap插件的使用方法。学习者还可以通过实际项目和案例学习,包括使用Bootstrap构建的网页示例,JavaScript在项目中的应用,以及响应式设计的案例研究。为了帮助学习者更好地掌握知识,该资料还提供了学习路径和建议,以有组织地进行学习。

2023-12-25

数据安全与网络安全-基于php+MySql实现简易留言板(完整源码+部署文档+环境安装)

资源内容概述: 完整源码: 包含了一个基于 PHP 和 MySQL 构建的简易留言板系统的所有源代码。这些代码涵盖了前端页面、后端逻辑和数据库交互的实现。 部署文档: 提供详细的部署说明和操作指南,让用户能够轻松地在本地或服务器上部署这个留言板系统。文档中可能包括所需软件、环境配置、数据库设置以及系统启动方法等信息。 环境安装指南: 提供了关于所需环境(如 PHP 版本、MySQL 版本等)的安装指南。这些指南有助于用户在自己的系统上配置所需的开发环境,以便顺利运行留言板系统。 功能特点: 可能包括该留言板系统的功能描述,例如用户登录、留言发布、留言管理(编辑、删除)、安全性措施(例如输入验证、防止 SQL 注入攻击等)等功能。 学习价值: 强调该资源对于理解数据安全和网络安全在 Web 开发中的重要性。用户可以通过阅读代码和文档,了解如何在实际项目中应用安全性措施,从而加强对网络安全的认识。 用途: 该资源可供开发者、安全爱好者或学生学习和实践,作为入门级别的 PHP 和 MySQL 数据库应用示例,同时了解如何构建基本的 Web 应用并考虑安全问题。

2023-12-25

农产品2.2w条价格数据(品种 批发市场 最低价格 最高价格 平均价格 发布时间 分类)

爬取的2.2w条农产品数据,其中包括下面几个字段: 品种 批发市场 最低价格 最高价格 平均价格 发布时间 分类 需要可以下载,可用作数据分析/数据可视化/模型预测/回归分析等

2023-12-24

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除