概述
多年来,我们一直在收集数据,随着时间的推移,数据很容易发生变化。因此,研究人员必须关注历史趋势,以便对未来事件进行准确预测。时间是时间序列中的自变量。
本文将帮助您在深入研究预测建模之前理解一些基本概念。
先决条件
- 需要对时间序列数据和分析有基本的了解。
- 了解时间序列的季节性和趋势是一个加分项。
介绍
时间序列中两个值之间的相关性称为自相关。换句话说,时间序列数据是相互关联的。平稳性表示时间序列中没有趋势、恒定方差、恒定自相关模式以及没有季节性变化。让我们研究一下平稳性和自相关如何在时间序列预测中发挥关键作用。