17、建筑能源调度与灵活性量化

建筑能源调度与灵活性量化

1. 积极能源建筑的新兴可能性

全球气候变化促使人们采取行动,减少人类活动对环境的影响。目前,各类建筑的建设、维护和使用占欧盟能源消耗的约40%,二氧化碳排放的36%。因此,提高建筑能源效率成为重要目标。

1.1 近零能耗建筑(nZEB)

世界各地有许多项目致力于将节能建筑发展为近零能耗建筑。虽然nZEB的定义因地区而异,但总体要求是减少化石燃料使用,使年能耗接近或等于年产量,同时保证建筑质量和用户舒适度。

nZEB需要具备良好的隔热围护结构和高性能的HVAC系统,并通过光伏发电等方式实现部分能源的本地生产。例如,将光伏板安装在屋顶或建筑表面。一些研究表明,地源热泵与光伏的结合是一种成本最优的可再生能源系统。

然而,过度依赖电能出口的nZEB会导致输入/输出功率曲线波动较大,影响电网稳定性。欧盟根据不同气候区制定了不同的能源效率要求,并且强调新建筑的nZEB应用,同时也在计划修订现有法规以提高存量建筑的能源效率。

1.2 积极能源建筑(PEB)

PEB是nZEB概念的进一步发展,虽然目前尚无官方定义,但可以概括其特点如下:
- 能够产生足够的能源,不仅满足自身需求,还能为消费设备或电动汽车供电。
- 为周边建筑提供能源支持,实现社区层面的能源中性甚至积极。
- 积极管理能源的消费、生产和存储,以系统方法实现性能最大化。
- 建立复杂的能源合作伙伴关系,为电网运营商和公用事业提供新服务。
- 追求全时能源积极,在低发电期可能使用生物质作为燃料。

PEB需要具备实时控制能源生产和消费的能力,这可以通过本

内容概要:本文详细介绍了一个基于布谷鸟搜索算法(CS)注意力机制长短期记忆网络(ALSTM)融合的风电功率预测项目实例,旨在通过智能优化深度学习相结合的方法提升预测精度。项目涵盖了从数据预处理、特征工程、CS算法优化ALSTM超参数、注意力机制增强模型对关键时序特征的关注能力,到模型训练、预测及结果可视化的完整流程。文中还提供了MATLAB代码示例,包括数据填补、归一化、滑动窗口构建样本、CS算法实现、ALSTM建模训练、预测反归一化、误差评估及注意力权重可视化等关键环节,展示了CS-ALSTM模型在应对风电数据高波动性、非线性、噪声干扰和长序列依赖等问题上的有效性。; 适合人群:具备一定机器学习深度学习基础,熟悉MATLAB编程,从事新能源预测、智能电网、时间序列分析等相关领域的研究人员或工程师,尤其是工作1-3年希望提升模型优化实战能力的技术人员; 使用场景及目标:①应用于风电场功率预测,提升预测精度以优化电网调度能源消纳;②研究智能优化算法(如CS)深度学习模型(如ALSTM)的融合机制;③开展太阳能、负荷等其他时序预测任务的模型开发参数自动优化; 阅读建议:此资源以实际项目为导向,强调算法实现工程应用结合,建议读者在理解模型架构基础上,动手复现代码并调试参数,重点关注CS算法的全局寻优过程注意力机制的可视化分析,深入掌握模型优化逻辑预测性能提升路径。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值