大规模多智能体团队的灵活协调
在动态环境中,团队合作是协调合作型智能体的有效范式,能够实现灵活且稳健的行为。然而,当应用于构建数百成员的大型团队时,传统团队合作模型的局限性便凸显出来。本文将介绍一种适用于大规模团队的新方法,通过组织动态子团队、利用社交网络特性以及高效的信息共享算法,实现团队的灵活协调。
1 引言
团队合作能使一组智能体在分布式、动态且可能充满敌意的环境中灵活且稳健地实现共同目标。许多基于基本团队合作理念的系统已成功应用于多个领域,如支持人类协作、灾难响应、制造、训练和游戏等。但这些团队的规模受到严重限制,为了解决更复杂的问题,我们需要更大规模且保留团队合作优势的团队。
传统团队合作方法成功的关键在于每个智能体对其他智能体和团队共同活动有明确、详细的模型。但当团队规模扩大时,维护这些模型变得不可行,因为通信需求无法随智能体数量的增加而有效扩展。没有这些模型,团队合作的理论和实践关键要素就会失效。
本文提出一种不依赖精确团队模型的团队合作模型,通过组织动态子团队和引入熟人网络,减少通信需求,使该方法适用于大规模团队。虽然放弃精确模型意味着无法提供像联合意图方法那样的凝聚力保证,但我们的算法旨在以高概率实现有凝聚力、灵活且稳健的团队合作。
1.1 核心思路
- 子团队划分 :将团队划分为动态变化的子团队,每个子团队专注于整体团队目标的子目标。子团队成员相互了解并对共同活动有准确模型,通信开销仅限于子团队内部。
- 熟人网络 :引入独立于子团队关系的熟人网络,连接团队中的所有智能体。智能体与网络中的直接
订阅专栏 解锁全文
37

被折叠的 条评论
为什么被折叠?



