可降级多智能体系统的鲁棒规划技术
1. 引言
计算机系统在按计划运行时,旨在达成预期目的并达到期望的性能水平。然而,实际中常出现预期条件未满足的情况,导致无法达到预期性能。在一些关键任务应用(如导弹发射过程)中,这种情况被视为彻底失败,系统设计者的任务是防止意外事件发生。但在大多数应用中,系统性能并非简单的布尔值,而是在一定范围内变化。当预期条件未满足时,系统应能适应变化,以较低性能水平继续运行,而非直接停止。
多智能体系统作为一种计算机系统,经常需要应对类似问题。其运行环境不断变化,不确定性问题更为突出,因此多智能体系统应是可降级的计算系统,能适应环境变化和意外事件,尽力维持可接受的性能水平。多智能体系统的发展为容错技术带来了机遇和挑战。一方面,多智能体容错方法可拓展容错系统研究,将性能和可靠性集成到统一框架;另一方面,多智能体系统中的故障概念与传统系统不同,提高其可靠性需要拓展容错范围并采用新型容错技术。
目前,该领域的研究主要集中在处理多智能体环境中的不确定性,如使用Markov决策过程(MDPs)建模随机环境中的顺序决策,以及应用扩展的智能体承诺模型和应急规划。但这些方法存在假设和局限性,且复杂度较高,在大规模智能体系统中的适用性有限。我们不仅要追求最佳效用,还需确保系统在意外事件发生时能优雅降级。因此,提高系统可靠性、增强其鲁棒性的机制十分必要。
2. 多智能体系统中性能与可靠性的综合视角
与传统系统相比,多智能体系统在解决问题方面有新视角,其具有以下重要特征:
- 自主性 :智能体是自主的,每个智能体都是独立决策者,不受外部实体强制控制。智能体活动是自身决策的结果,但这并不意味着智能体是孤
订阅专栏 解锁全文
51

被折叠的 条评论
为什么被折叠?



