目录
单摆
牛顿摆
蛇形摆
混沌摆
混沌摆有很多种,其中一种是这样的:
假设质地都是均匀的,都是粗细相同的圆柱,根据平衡态可以推算出:
至于为什么平衡态只能是这样,不会是全部竖着的,那是因为底座加了磁铁。
无论是平衡态还是动态转动,磁铁都极大改善了观赏效果。
另一种混沌摆:
二体系统
以平面中的二体系统为例,假设2个星体的位置分别为x1,y1,x2,y2,则速度Vx1,Vy1,Vx2,Vy2就是这4个变量对时间t的微分,加速度是速度对t的微分。
按照距离公式和万有引力公式可以列出微分方程组:
其中G是万有引力常数,M1和M2是质量。
初始状态包括8个量,x1,y1,x2,y2,Vx1,Vy1,Vx2,Vy2
可能因为我是业余的,我列的这些方程组都不知道咋解。
看看中科院的解答:
作者:中科院物理所
三体系统
(1)对于一般性的三体问题,无法写出一个解析通解。
在二体问题的分析中,我们已经知道,在三维空间有x,y,z 3个自由度,因此每一个天体可以写出3个二阶微分方程,如果改写成一阶微分方程,那就是6个。对于三体问题,就会得到18个一阶微分方程。求解三体问题,等价于解这个18个一阶微分方程构成的复杂的方程组。1941年,西格尔从数学上证明了,不可能找全这18个代数积分。所以,代数角度求积分来解三体问题的道路,已经被证明完全不通了。
(2)对三体问题的数值解,会面临混沌的初值敏感问题。
(3)在某些特定构型下,三体问题有解析解,甚至是非常直观而简单的解析解。