有趣的摆、混沌系统

目录

单摆

牛顿摆

蛇形摆

混沌摆

二体系统

三体系统


单摆

牛顿摆

蛇形摆

混沌摆

混沌摆有很多种,其中一种是这样的:

假设质地都是均匀的,都是粗细相同的圆柱,根据平衡态可以推算出:

 

至于为什么平衡态只能是这样,不会是全部竖着的,那是因为底座加了磁铁。

无论是平衡态还是动态转动,磁铁都极大改善了观赏效果。

另一种混沌摆:

二体系统

以平面中的二体系统为例,假设2个星体的位置分别为x1,y1,x2,y2,则速度Vx1,Vy1,Vx2,Vy2就是这4个变量对时间t的微分,加速度是速度对t的微分。

按照距离公式和万有引力公式可以列出微分方程组:

r=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}\\ x_1''=GM_1(y_2-y_1)/r^3\\ y_1''=GM_1(x_2-x_1)/r^3\\ x_2''=-x_1''*M_2/M_1 \\y_2''=-y_1''*M_2/M_1

其中G是万有引力常数,M1和M2是质量。

初始状态包括8个量,x1,y1,x2,y2,Vx1,Vy1,Vx2,Vy2

可能因为我是业余的,我列的这些方程组都不知道咋解。

看看中科院的解答:

作者:中科院物理所
 

三体系统

(1)对于一般性的三体问题,无法写出一个解析通解。

在二体问题的分析中,我们已经知道,在三维空间有x,y,z 3个自由度,因此每一个天体可以写出3个二阶微分方程,如果改写成一阶微分方程,那就是6个。对于三体问题,就会得到18个一阶微分方程。求解三体问题,等价于解这个18个一阶微分方程构成的复杂的方程组。1941年,西格尔从数学上证明了,不可能找全这18个代数积分。所以,代数角度求积分来解三体问题的道路,已经被证明完全不通了。

(2)对三体问题的数值解,会面临混沌的初值敏感问题。

(3)在某些特定构型下,三体问题有解析解,甚至是非常直观而简单的解析解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值