经常遇见,以为自己懂了,实际上根本不懂,特地总结一下。
L-Lipschitz continuous(利普西茨连续)关注的是f(x)本身,而L-smooth指梯度 ∇ f ( x ) \nabla f(x) ∇f(x)是L-Lipschitz continuous的函数。
L-Lipschitz continuous的定义:
L-smooth的定义:
∇ f ( x ) \nabla f(x) ∇f(x)是Lipschitz continuous(利普西茨连续)是比仅仅continuous(连续)更强的条件,所以任何differentiable的函数的梯度是Lipschitz continuous的实际上就是一个continuously differentiable的函数。
如果函数既是convex又是M-smooth,那么以下都是等价的