deepseek的对话风格

概述

deepseek的对话风格,比一般的模型的回答多了思考过程,这是它比较可爱的地方,模型的回答有了思考过程,对用户而言大模型的回答不完全是一个黑盒。

deepseek的对话风格

train_prompt_style = """Below is an instruction that describes a task, paired with an input that provides further context.
Write a response that appropriately completes the request.
Before answering, think carefully about the question and create a step-by-step chain of thoughts to ensure a logical and accurate response.


### Instruction:
You are a medical expert with advanced knowledge in clinical reasoning, diagnostics, and treatment planning.
Please answer the following medical question.


### Question:
{}


### Response:
<think>
{}
</think>
{}"""

因此需要有一个程序,将数据集中的内容填充到上面的三个占位符{}中。

### 修改DeepSeek本地部署中的API响应返回参数 在DeepSeek的本地部署环境中,调整API响应的返回参数主要涉及修改API接口层以及可能涉及到的部分中间件逻辑。对于基于Ollama+AnythingLLM+Python框架下的DeepSeek模型来说,通常会有一个负责处理请求和发送回复的服务端程序[^1]。 为了去除或自定义API响应中的特定字段,在服务端代码中找到用于组装HTTP响应的地方是非常重要的。这一般位于路由处理器或是控制器内。假设当前使用的Web框架为Flask,则可以在视图函数里直接操作要返回的数据结构: ```python from flask import Flask, jsonify app = Flask(__name__) @app.route('/api/deepseek', methods=['POST']) def deepseek_api(): result = {"key": "value", ...} # 原始数据 # 对原始data进行筛选,只保留需要的内容 filtered_result = {k:v for k,v in result.items() if k not in ['unwanted_key']} return jsonify(filtered_result), 200 ``` 如果想要更灵活地控制哪些键应该被包含于最终输出之中,还可以引入额外配置文件或者环境变量来动态决定过滤规则。例如设置一个黑名单列表`EXCLUDE_KEYS=["id","timestamp"]`,这样即使未来有新的敏感信息加入到默认输出当中也能方便地加以排除[^2]。 另外一种方法是在序列化阶段做文章——即当对象转换成JSON字符串之前对其进行裁剪。许多现代ORM库都支持指定仅导出某些属性;而对于纯字典形式的结果集而言,则可以通过重写`json.dumps()`前后的钩子来进行预/后置处理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值