概率论-极大似然估计

极大似然估计

最大似然原理

在这里插入图片描述

极大似然估计

  极大似然估计是建立在最大似然原理的基础上的一个统计方法。极大似然估计提供了一种给定观察数据来评估模型参数的方法,即“模型已定,参数未知”。通过观察若干次实验的结果,利用实验结果得到某个参数值能够使样本出现的概率最大,则称为极大似然估计。

  简而言之,极大似然估计的目的是利用已知的样本结果,反推最有可能导致这样结果的参数值。

似然函数

  假设一个样本集 D D D n n n个样本都是独立同分布的,并且该样本集为
D = x 1 , x 2 , … , x n D={x_1,x_2,\ldots,x_n} D=x1,x2,,xn
  似然函数(likelihood function):联合概率密度函数 p ( D ∣ θ ) p(D|\theta) p(Dθ)称为相对于 x 1 , x 2 , … , x n {x_1,x_2,\ldots,x_n} x1,x2,,xn θ \theta θ的似然函数。
l ( θ ) = p ( D ∣ θ ) = p ( x 1 , x 2 , … , x n ∣ θ ) = ∏ i = 1 n p ( x i ∣ θ ) l(\theta) = p(D|\theta) = p(x_1,x_2,\ldots,x_n|\theta) = \prod_{i=1}^n p(x_i|\theta) l(θ)=p(Dθ)=p(x1,x2,,xnθ)=i=1np(xiθ)

极大似然函数估计值

  如果 θ ^ \hat{\theta} θ^ θ \theta θ参数空间中能使似然函数 l ( θ ) l(\theta) l(θ)最大的 θ \theta θ值,则 θ ^ \hat{\theta} θ^是最可能的参数值,那么 θ ^ \hat{\theta} θ^ θ \theta θ的最大似然估计量,记作
θ ^ = d ( x 1 , x 2 , … , x n ) = d ( D ) \hat{\theta} = d(x_1,x_2,\ldots,x_n) = d(D) θ^=d(x1,x2,,xn)=d(D)
并且 θ ^ ( x 1 , x 2 , … , x n ) \hat{\theta}(x_1,x_2,\ldots,x_n) θ^(x1,x2,,xn)称作极大似然函数估计值。

求解极大似然函数

  给出求解最大 θ \theta θ值的公式
θ ^ = a r g m a x ⏟ θ l ( θ ) = a r g m a x ⏟ θ ∏ i = 1 n p ( x i ∣ θ ) \hat{\theta} = arg \underbrace{max}_\theta l(\theta) = arg \underbrace{max}_\theta \prod_{i=1}^n p(x_i|\theta) θ^=argθ maxl(θ)=argθ maxi=1np(xiθ)
  为了方便计算,定义对数似然函数 H ( θ ) H(\theta) H(θ),即对似然函数求对数
H ( θ ) = ln ⁡ l ( θ ) H(\theta) = \ln{l(\theta)} H(θ)=lnl(θ)
  因此求最大 θ \theta θ值的公式变成了
θ ^ = a r g m a x ⏟ θ H ( θ ) = a r g m a x ⏟ θ ln ⁡ l ( θ ) = a r g m a x ⏟ θ ∏ i = 1 n ln ⁡ p ( x i ∣ θ ) \hat{\theta} = arg \underbrace{max}_\theta H(\theta) = arg \underbrace{max}_\theta \ln{l(\theta)} = arg \underbrace{max}_\theta \prod_{i=1}^n \ln{p(x_i|\theta)} θ^=argθ maxH(θ)=argθ maxlnl(θ)=argθ maxi=1nlnp(xiθ)
并且可以发现公式中只有一个变量 θ \theta θ

未知参数只有一个

  如果 θ \theta θ为标量,在似然函数满足连续、可微的情况下,则极大似然估计量是下面微分方程的解
d H ( θ ) d θ = d ln ⁡ l ( θ ) d θ = 0 {\frac{dH(\theta)}{d\theta}} = {\frac{d\ln{l(\theta)}}{d\theta}} = 0 dθdH(θ)=dθdlnl(θ)=0

位置参数有多个

  如果 θ \theta θ k k k维向量,可以把 θ \theta θ记作 θ = [ θ 1 , θ 2 , … , θ k ] T \theta = [\theta_1,\theta_2,\ldots,\theta_k]^T θ=[θ1,θ2,,θk]T,对 θ 1 , θ 2 , … , θ k \theta_1,\theta_2,\ldots,\theta_k θ1,θ2,,θk求梯度,可得
Δ θ = [ ∂ ∂ θ 1 , ∂ ∂ θ 2 , ⋯   , ∂ ∂ θ s ] T \Delta_\theta=[{\frac{\partial}{\partial_{\theta_1}}},{\frac{\partial}{\partial_{\theta_2}}},\cdots,{\frac{\partial}{\partial_{\theta_s}}}]^T Δθ=[θ1,θ2,,θs]T
  如果似然函数满足连续、可导的情况下,则最大似然估计量就是如下方程的解:
Δ θ H ( θ ) = Δ θ ln ⁡ l ( θ ) = ∑ i = 1 n Δ θ ln ⁡ ( p ( x i ∣ θ ) ) = 0 \Delta_\theta{H(\theta)} = \Delta_\theta\ln{l(\theta)} = \sum_{i=1}^n \Delta_\theta \ln(p(x_i|\theta)) = 0 ΔθH(θ)=Δθlnl(θ)=i=1nΔθln(p(xiθ))=0

总结

  方程的解只是一个估计值,只有在样本趋于无限多的时候,才会逐渐接近真实值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值