【Tensorflow教程笔记】TensorFlow 模型导出

这篇教程详细介绍了TensorFlow模型的导出,包括SavedModel格式的完整导出以及Keras的H5模型导出。SavedModel包含模型的权重和计算图,便于部署和分享。Keras模型可以方便地导出为SavedModel,但某些情况需要使用tf.function转换。同时,文章提到了Keras的H5模型导出,适用于服务器和移动端的不同部署需求。
摘要由CSDN通过智能技术生成

Tensorflow教程笔记

  1. 基础
    TensorFlow 基础
    TensorFlow 模型建立与训练
    基础示例:多层感知机(MLP)
    卷积神经网络(CNN)
    循环神经网络(RNN)
    深度强化学习(DRL)
    Keras Pipeline
    自定义层、损失函数和评估指标
    常用模块 tf.train.Checkpoint :变量的保存与恢复
    常用模块 TensorBoard:训练过程可视化
    常用模块 tf.data :数据集的构建与预处理
    常用模块 TFRecord :TensorFlow 数据集存储格式
    常用模块 tf.function :图执行模式
    常用模块 tf.TensorArray :TensorFlow 动态数组
    常用模块 tf.config:GPU 的使用与分配

  2. 部署
    TensorFlow 模型导出
    TensorFlow Serving
    TensorFlow Lite

  3. 大规模训练与加速
    TensorFlow 分布式训练
    使用 TPU 训练 TensorFlow 模型

  4. 扩展
    TensorFlow Hub 模型复用
    TensorFlow Datasets 数据集载入

  5. 附录
    强化学习基础简介


为了将训练好的机器学习模型部署到各个目标平台(如服务器、移动端、嵌入式设备和浏览器等),我们的第一步往往是将训练好的整个模型完整导出(序列化)为一系列标准格式的文件。在此基础上,我们才可以在不同的平台上使用相对应的部署工具来部署模型文件。TensorFlow 提供了统一模型导出格式 SavedModel,使得我们训练好的模型可以以这一格式为中介,在多种不同平台上部署,这是我们在 TensorFlow 2 中主要使用的导出格式。同时,基于历史原因,Keras 的 SequentialFunctional 模式也有自有的模型导出格式,我们也一并介绍。

使用 SavedModel 完整导出模型

在前节中我们介绍了 Checkpoint,它可以帮助我们保存和恢复模型中参数的权值。而作为模型导出格式的 SavedModel 则更进一步,其包含了一个 TensorFlow 程序的完整信息:不仅包含参数的权值,还包含计算的流程(即计算图)。当模型导出为 SavedModel 文件时,无须模型的源代码即可再次运行模型,这使得 SavedModel 尤其适用于模型的分享和部署。后文的 TensorFlow Serving(服务器端部署模型)、TensorFlow Lite(移动端部署模型)以及 TensorFlow.js 都会用到这一格式。

Keras 模型均可方便地导出为 SavedModel 格式。不过需要注意的是,因为 SavedModel 基于计算图,所以对于使用继承 tf.keras.Model 类建立的 Keras 模型,其需要导出到 SavedModel 格式的方法(比如 call )都需要使用 @tf.function 修饰( @tf.function 的使用方式见 前文 )。然后,假设我们有一个名为 model 的 Keras 模型,使用下面的代码即可将模型导出为 SavedModel

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值