提供一个API供使用者调用,大抵需求如下:
输入某用户的位置(经纬度),提交到Web服务器,再把任务(找出该用户附近一公里内的商城推荐)提交到Spark集群上执行,返回计算结果后再存入到redis数据库中,供后台调用返回结果给使用方。
网上关于这方面的资料大抵是基于spark-assembly-1.4.1-hadoop2.6.0.jar,而我们这边的环境是spark2.0-Hadoop2.6.0,版本的不同意味着教程可能不适用。经过测试证明,spark1.4版的jar包与平台环境不兼容,会出现任务提交失败的异常。所以建议把平台环境的jar包拷入项目。
另一方面,由于集群和发布项目的web服务器不在同一台机器,所以需要把spark相关的jar包(187M)拷贝一份到web服务器。
数据分析人员开发了一个jar(spark-java-2.xx-SNAPSHOT.jar)包,需要调用StationIdForUser类:传入经纬度,然后它会上传任务到集群,但它依赖于spark集群的众多jar包。
package com.sibat.spark.action;
import org.apache.hadoop.conf.Configuration;
import org.apache.spark.SparkConf;
import org.apache.spark.deploy.yarn.Client;
import org.apache.spark.deploy.yarn.ClientArguments;
//参考网上教程
public class Action {
public static void main(String[] args) {
//String tmp = Thread.currentThread().getContextClassLoader().getResource("").getPath();
//tmp = tmp.substring(0, tmp.length() - 8);
String[] arg0 = new String[] { "--class", "cn.sibat.spark.StationIdForUser",
//
"--jar", ".../apache-tomcat-7.0.70/webapps/spark-task_lib/spark-java-2.4-SNAPSHOT.jar",
//
"--arg", "22.1956491323113,113.555733036396" // 经纬度
};
// StationIdForUser.main(arg0);//该方法记得注释,不然会提交错误
//以下方法是为了方便在本地环境做测试
Configuration conf = new Configuration();
String os = System.getProperty("os.name");
boolean cross_platform = false;
if (os.contains("Windows")) {
cross_platform = true;
}
conf.setBoolean("mapreduce.app-submission.cross-platform", cross_platform);// 配置使用跨平台提交任务
conf.set("fs.defaultFS", "hdfs://192.168.2.9:9000");// 指定namenode
conf.set("mapreduce.framework.name", "yarn"); // 指定使用yarn框架
conf.set("yarn.resourcemanager.address", "192.168.2.9:8032");// 指定resourcemanager
conf.set("yarn.resourcemanager.scheduler.address", "192.168.2.9:8030");// 指定资源分配器
conf.set("mapreduce.jobhistory.address", "192.168.2.9:10020");
System.setProperty("SPARK_YARN_MODE", "true");
SparkConf sparkConf = new SparkConf().setMaster("yarn").setAppName("JavaSparkPi");//appname可以随便取,master有多种提交方式,请自行选择
// SparkConf sparkConf = new SparkConf();
ClientArguments cArgs = new ClientArguments(arg0);
new Client(cArgs, conf, sparkConf).run();
}
}
把jar发布到web服务器,执行java -jar jar包名 参数 参数
无法正常提交,猜测是jar包冲突。
为了验证这一点,写Java程序验证。思路大抵是:把本地的jar包存入一个List中,然后再遍历服务器的jar文件,若有某个jar在本地没有匹配到,就写入2.txt(多余的jar,可以删除)。
package com.zh.zsr;
import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.List;
/**
* 对比服务器文件目录和Windows文件目录中,哪个文件是多余的
*
* @author nanphonfy
* @time 2016年8月31日 上午9:54:19
*/
public class FilePath {
public static void main(String[] args) throws IOException {
String path = "C:\\Users\\sibat\\Desktop\\spark-task_lib";
FilePath fp = new FilePath();
List<String> paths = fp.getFiles(path);//可以得到本地的所有jar包
List<String> names = new ArrayList<>();
for (String p : paths) {
String[] temp = p.split("\\\\");//Linux环境为"/"
int len = temp.length;
String yes = temp[len - 1];
names.add(yes);
}
int len = names.size();
String readFile = "C://Users//sibat//Desktop//1.txt";
String writeFile = "C://Users//sibat//Desktop//2.txt";
FileInputStream fis = new FileInputStream(readFile);
InputStreamReader isw = new InputStreamReader(fis, "GBK");
BufferedReader br = new BufferedReader(isw);// 把filewriter的写法写成FileOutputStream形式
FileOutputStream fos = new FileOutputStream(writeFile);
OutputStreamWriter osw = new OutputStreamWriter(fos, "GBK");
BufferedWriter bw = new BufferedWriter(osw);// 把filewriter的写法写成FileOutputStream形式
String line = "";
/* 得到服务器的完整jar包名,并把它存入2.txt
long a = System.currentTimeMillis();
while ((line = br.readLine()) != null) {
int len1 = "-rw-r--r-- 1 datum datum 69409 8月 30 17:41 ".length();
// line.substring(len1+1);
bw.write(line.substring(len1 + 4));
bw.newLine();
bw.flush();
// System.out.println(line);
}
long b = System.currentTimeMillis();
System.out.println(b - a);
*/
//把2.txt得到的服务器完整jar包名,拷到1.txt
long a = System.currentTimeMillis();
while ((line = br.readLine()) != null) {
int i;
for (i = 0; i < len; i++) {
if (line.equals(names.get(i)))
break;
}
if (i == len) {
bw.write(line);
bw.newLine();
bw.flush();
}
}
long b = System.currentTimeMillis();
System.out.println(b - a);
}
private List<String> absolutePaths = new LinkedList<>();
/*
* 通过递归得到某一路径下所有的目录及其文件
*/
public List<String> getFiles(String filePath) {
File root = new File(filePath);
File[] files = root.listFiles();
for (File file : files) {
if (file.isDirectory()) {
getFiles(file.getAbsolutePath());
} else {// 默认为没有目录,只有文件
absolutePaths.add(file.getAbsolutePath().toString());
}
}
return absolutePaths;
}
}
这种显示方法即可切割,得到完整的jar包名。复制进1.txt,通过如上程序去掉jar包名前的字符。
最终发现多出5个jar包,在web服务器中删除即可。
spark-task.jar ->(依赖的jar包) spark-task_lib
紧接着,发现提交成功,但是spark上的任务却都是失败的,记录日志如下:
[datum@webserver webapps]$ java -jar spark-task.jar
log4j:WARN No appenders could be found for logger (org.apache.hadoop.util.Shell).
log4j:WARN Please initialize the log4j system properly.
log4j:WARN See http://logging.apache.org/log4j/1.2/faq.html#noconfig for more info.
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
16/08/31 10:00:16 INFO Client: Requesting a new application from cluster with 4 NodeManagers
16/08/31 10:00:17 INFO Client: Verifying our application has not requested more than the maximum memory capability of the cluster (8192 MB per container)
16/08/31 10:00:17 INFO Client: Will allocate AM container, with 896 MB memory including 384 MB overhead
16/08/31 10:00:17 INFO Client: Setting up container launch context for our AM
16/08/31 10:00:17 INFO Client: Setting up the launch environment for our AM container
16/08/31 10:00:17 INFO Client: Preparing resources for our AM container
16/08/31 10:00:17 WARN Client: Neither spark.yarn.jars nor spark.yarn.archive is set, falling back to uploading libraries under SPARK_HOME.
16/08/31 10:00:19 INFO Client: Uploading resource file:/tmp/spark-367eaac7-b80e-4517-87b3-d6540fc2cc13/__spark_libs__5719539575137016651.zip -> hdfs://192.168.2.9:9000/user/datum/.sparkStaging/application_1472554805174_0017/__spark_libs__5719539575137016651.zip
16/08/31 10:00:22 INFO Client: Uploading resource file:/data/apps/apache-tomcat-7.0.70/webapps/spark-task_lib/spark-java-2.4-SNAPSHOT.jar -> hdfs://192.168.2.9:9000/user/datum/.sparkStaging/application_1472554805174_0017/spark-java-2.4-SNAPSHOT.jar
16/08/31 10:00:22 INFO Client: Uploading resource file:/tmp/spark-367eaac7-b80e-4517-87b3-d6540fc2cc13/__spark_conf__3363112904998123006.zip -> hdfs://192.168.2.9:9000/user/datum/.sparkStaging/application_1472554805174_0017/__spark_conf__.zip
16/08/31 10:00:22 INFO SecurityManager: Changing view acls to: datum
16/08/31 10:00:22 INFO SecurityManager: Changing modify acls to: datum
16/08/31 10:00:22 INFO SecurityManager: Changing view acls groups to:
16/08/31 10:00:22 INFO SecurityManager: Changing modify acls groups to:
16/08/31 10:00:22 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(datum); groups with view permissions: Set(); users with modify permissions: Set(datum); groups with modify permissions: Set()
16/08/31 10:00:22 INFO Client: Submitting application application_1472554805174_0017 to ResourceManager
16/08/31 10:00:22 INFO YarnClientImpl: Submitted application application_1472554805174_0017
16/08/31 10:00:23 INFO Client: Application report for application_1472554805174_0017 (state: ACCEPTED)
16/08/31 10:00:23 INFO Client:
client token: N/A
diagnostics: N/A
ApplicationMaster host: N/A
ApplicationMaster RPC port: -1
queue: default
start time: 1472608887913
final status: UNDEFINED
tracking URL: http://master01:8088/proxy/application_1472554805174_0017/
user: datum
16/08/31 10:00:24 INFO Client: Application report for application_1472554805174_0017 (state: ACCEPTED)
16/08/31 10:00:25 INFO Client: Application report for application_1472554805174_0017 (state: ACCEPTED)
16/08/31 10:00:26 INFO Client: Application report for application_1472554805174_0017 (state: ACCEPTED)
16/08/31 10:00:27 INFO Client: Application report for application_1472554805174_0017 (state: ACCEPTED)
16/08/31 10:00:28 INFO Client: Application report for application_1472554805174_0017 (state: ACCEPTED)
16/08/31 10:00:29 INFO Client: Application report for application_1472554805174_0017 (state: ACCEPTED)
16/08/31 10:00:30 INFO Client: Application report for application_1472554805174_0017 (state: ACCEPTED)
16/08/31 10:00:31 INFO Client: Application report for application_1472554805174_0017 (state: ACCEPTED)
16/08/31 10:00:32 INFO Client: Application report for application_1472554805174_0017 (state: ACCEPTED)
16/08/31 10:00:33 INFO Client: Application report for application_1472554805174_0017 (state: ACCEPTED)
16/08/31 10:00:34 INFO Client: Application report for application_1472554805174_0017 (state: ACCEPTED)
16/08/31 10:00:35 INFO Client: Application report for application_1472554805174_0017 (state: ACCEPTED)
16/08/31 10:00:36 INFO Client: Application report for application_1472554805174_0017 (state: ACCEPTED)
16/08/31 10:00:37 INFO Client: Application report for application_1472554805174_0017 (state: ACCEPTED)
16/08/31 10:00:38 INFO Client: Application report for application_1472554805174_0017 (state: ACCEPTED)
16/08/31 10:00:39 INFO Client: Application report for application_1472554805174_0017 (state: ACCEPTED)
16/08/31 10:00:40 INFO Client: Application report for application_1472554805174_0017 (state: ACCEPTED)
16/08/31 10:00:41 INFO Client: Application report for application_1472554805174_0017 (state: ACCEPTED)
16/08/31 10:00:42 INFO Client: Application report for application_1472554805174_0017 (state: ACCEPTED)
16/08/31 10:00:43 INFO Client: Application report for application_1472554805174_0017 (state: ACCEPTED)
16/08/31 10:00:44 INFO Client: Application report for application_1472554805174_0017 (state: ACCEPTED)
16/08/31 10:00:45 INFO Client: Application report for application_1472554805174_0017 (state: ACCEPTED)
16/08/31 10:00:46 INFO Client: Application report for application_1472554805174_0017 (state: ACCEPTED)
16/08/31 10:00:47 INFO Client: Application report for application_1472554805174_0017 (state: ACCEPTED)
16/08/31 10:00:48 INFO Client: Application report for application_1472554805174_0017 (state: ACCEPTED)
16/08/31 10:00:49 INFO Client: Application report for application_1472554805174_0017 (state: ACCEPTED)
16/08/31 10:00:50 INFO Client: Application report for application_1472554805174_0017 (state: ACCEPTED)
^C16/08/31 10:00:51 INFO ShutdownHookManager: Shutdown hook called
16/08/31 10:00:51 INFO ShutdownHookManager: Deleting directory /tmp/spark-367eaac7-b80e-4517-87b3-d6540fc2cc13
Google了许多资料,猜测程序试图把web本机的jar包提交到spark上(然而这是没必要的,因为本机的jar是从集群上拷贝下来的)。
尝试用SparkSubmit方法,出现错误。最后查看源码才发现,原来是新版本的类做了改进,以致于旧教程不适用。代码如下:
package com.sibat.spark.action;
import org.apache.spark.deploy.SparkSubmit;
/**
*
* @author nanphonfy
*
*/
public class Task {
//该方法与旧教程的差别在于,旧教程需要在arg0数组中写上--jar和--arg参数,而实际上,在新版的spark类中是不需要这么做的。
public static void main(String[] args) {
String arg = null;
if (args.length == 2) {
arg = args[0] + "," + args[1];
System.out.println("通过web项目执行cmd:" + arg);
String[] arg0 = new String[] { "--master", "spark://master01:7077", //
"--class", "cn.sibat.spark.StationIdForUser", //
".../apache-tomcat-7.0.70/webapps/spark-task_lib/spark-java-2.7-SNAPSHOT.jar", //
"" + arg + "" };
SparkSubmit.main(arg0);
} else {
String[] arg0 = new String[] { "--master", "spark://master01:7077", //
"--class", "cn.sibat.spark.StationIdForUser", //
".../apache-tomcat-7.0.70/webapps/spark-task_lib/spark-java-2.7-SNAPSHOT.jar", //
"22.1956491323113,113.555733036396" };
SparkSubmit.main(arg0);
}
}
}
提交成功:
[datum@webserver webapps]$ sh exe.sh
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
16/09/01 14:47:02 INFO SparkContext: Running Spark version 2.0.0
16/09/01 14:47:02 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
16/09/01 14:47:02 INFO SecurityManager: Changing view acls to: datum
16/09/01 14:47:02 INFO SecurityManager: Changing modify acls to: datum
16/09/01 14:47:02 INFO SecurityManager: Changing view acls groups to:
16/09/01 14:47:02 INFO SecurityManager: Changing modify acls groups to:
16/09/01 14:47:02 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(datum); groups with view permissions: Set(); users with modify permissions: Set(datum); groups with modify permissions: Set()
16/09/01 14:47:03 INFO Utils: Successfully started service 'sparkDriver' on port 55903.
16/09/01 14:47:03 INFO SparkEnv: Registering MapOutputTracker
16/09/01 14:47:03 INFO SparkEnv: Registering BlockManagerMaster
16/09/01 14:47:03 INFO DiskBlockManager: Created local directory at /tmp/blockmgr-10614c25-2d1a-472d-8020-d37463290840
16/09/01 14:47:03 INFO MemoryStore: MemoryStore started with capacity 1106.4 MB
16/09/01 14:47:04 INFO SparkEnv: Registering OutputCommitCoordinator
16/09/01 14:47:04 WARN Utils: Service 'SparkUI' could not bind on port 4040. Attempting port 4041.
16/09/01 14:47:04 INFO Utils: Successfully started service 'SparkUI' on port 4041.
16/09/01 14:47:04 INFO SparkUI: Bound SparkUI to 0.0.0.0, and started at http://192.168.2.2:4041
16/09/01 14:47:04 INFO SparkContext: Added JAR file:/data/apps/apache-tomcat-7.0.70/webapps/spark-task_lib/spark-java-2.6-SNAPSHOT.jar at spark://192.168.2.2:55903/jars/spark-java-2.6-SNAPSHOT.jar with timestamp 1472712424481
16/09/01 14:47:04 INFO StandaloneAppClient$ClientEndpoint: Connecting to master spark://master01:7077...
16/09/01 14:47:04 INFO TransportClientFactory: Successfully created connection to master01/192.168.2.9:7077 after 26 ms (0 ms spent in bootstraps)
16/09/01 14:47:04 INFO StandaloneSchedulerBackend: Connected to Spark cluster with app ID app-20160901144819-0004
16/09/01 14:47:04 INFO StandaloneAppClient$ClientEndpoint: Executor added: app-20160901144819-0004/0 on worker-20160901101340-192.168.2.13-55623 (192.168.2.13:55623) with 16 cores
16/09/01 14:47:04 INFO StandaloneSchedulerBackend: Granted executor ID app-20160901144819-0004/0 on hostPort 192.168.2.13:55623 with 16 cores, 1024.0 MB RAM
16/09/01 14:47:04 INFO StandaloneAppClient$ClientEndpoint: Executor added: app-20160901144819-0004/1 on worker-20160901101426-192.168.2.7-56600 (192.168.2.7:56600) with 8 cores
16/09/01 14:47:04 INFO StandaloneSchedulerBackend: Granted executor ID app-20160901144819-0004/1 on hostPort 192.168.2.7:56600 with 8 cores, 1024.0 MB RAM
16/09/01 14:47:04 INFO StandaloneAppClient$ClientEndpoint: Executor added: app-20160901144819-0004/2 on worker-20160901101433-192.168.2.10-52999 (192.168.2.10:52999) with 8 cores
16/09/01 14:47:04 INFO StandaloneSchedulerBackend: Granted executor ID app-20160901144819-0004/2 on hostPort 192.168.2.10:52999 with 8 cores, 1024.0 MB RAM
16/09/01 14:47:04 INFO StandaloneAppClient$ClientEndpoint: Executor added: app-20160901144819-0004/3 on worker-20160901101446-192.168.2.6-47335 (192.168.2.6:47335) with 8 cores
16/09/01 14:47:04 INFO StandaloneSchedulerBackend: Granted executor ID app-20160901144819-0004/3 on hostPort 192.168.2.6:47335 with 8 cores, 1024.0 MB RAM
16/09/01 14:47:04 INFO Utils: Successfully started service 'org.apache.spark.network.netty.NettyBlockTransferService' on port 45142.
16/09/01 14:47:04 INFO NettyBlockTransferService: Server created on 192.168.2.2:45142
16/09/01 14:47:04 INFO BlockManagerMaster: Registering BlockManager BlockManagerId(driver, 192.168.2.2, 45142)
16/09/01 14:47:04 INFO BlockManagerMasterEndpoint: Registering block manager 192.168.2.2:45142 with 1106.4 MB RAM, BlockManagerId(driver, 192.168.2.2, 45142)
16/09/01 14:47:04 INFO BlockManagerMaster: Registered BlockManager BlockManagerId(driver, 192.168.2.2, 45142)
16/09/01 14:47:04 INFO StandaloneAppClient$ClientEndpoint: Executor updated: app-20160901144819-0004/0 is now RUNNING
16/09/01 14:47:04 INFO StandaloneAppClient$ClientEndpoint: Executor updated: app-20160901144819-0004/1 is now RUNNING
16/09/01 14:47:04 INFO StandaloneAppClient$ClientEndpoint: Executor updated: app-20160901144819-0004/3 is now RUNNING
16/09/01 14:47:04 INFO StandaloneAppClient$ClientEndpoint: Executor updated: app-20160901144819-0004/2 is now RUNNING
16/09/01 14:47:06 INFO EventLoggingListener: Logging events to hdfs://master01:9000/historyserverforspark/app-20160901144819-0004
16/09/01 14:47:06 INFO StandaloneSchedulerBackend: SchedulerBackend is ready for scheduling beginning after reached minRegisteredResourcesRatio: 0.0
16/09/01 14:47:06 INFO CoarseGrainedSchedulerBackend$DriverEndpoint: Registered executor NettyRpcEndpointRef(null) (192.168.2.13:55909) with ID 0
16/09/01 14:47:06 INFO CoarseGrainedSchedulerBackend$DriverEndpoint: Registered executor NettyRpcEndpointRef(null) (192.168.2.6:58228) with ID 3
16/09/01 14:47:06 INFO BlockManagerMasterEndpoint: Registering block manager 192.168.2.13:48271 with 366.3 MB RAM, BlockManagerId(0, 192.168.2.13, 48271)
16/09/01 14:47:06 INFO BlockManagerMasterEndpoint: Registering block manager 192.168.2.6:48243 with 366.3 MB RAM, BlockManagerId(3, 192.168.2.6, 48243)
16/09/01 14:47:06 INFO CoarseGrainedSchedulerBackend$DriverEndpoint: Registered executor NettyRpcEndpointRef(null) (192.168.2.10:40581) with ID 2
16/09/01 14:47:07 INFO BlockManagerMasterEndpoint: Registering block manager 192.168.2.10:50607 with 366.3 MB RAM, BlockManagerId(2, 192.168.2.10, 50607)
16/09/01 14:47:07 INFO MemoryStore: Block broadcast_0 stored as values in memory (estimated size 227.3 KB, free 1106.2 MB)
16/09/01 14:47:07 INFO CoarseGrainedSchedulerBackend$DriverEndpoint: Registered executor NettyRpcEndpointRef(null) (192.168.2.7:60528) with ID 1
16/09/01 14:47:07 INFO MemoryStore: Block broadcast_0_piece0 stored as bytes in memory (estimated size 20.2 KB, free 1106.2 MB)
16/09/01 14:47:07 INFO BlockManagerInfo: Added broadcast_0_piece0 in memory on 192.168.2.2:45142 (size: 20.2 KB, free: 1106.4 MB)
16/09/01 14:47:07 INFO BlockManagerMasterEndpoint: Registering block manager 192.168.2.7:50861 with 366.3 MB RAM, BlockManagerId(1, 192.168.2.7, 50861)
16/09/01 14:47:07 INFO SparkContext: Created broadcast 0 from textFile at StationIdForUser.java:27
16/09/01 14:47:07 INFO FileInputFormat: Total input paths to process : 1
16/09/01 14:47:07 INFO SparkContext: Starting job: foreach at StationIdForUser.java:36
16/09/01 14:47:07 INFO DAGScheduler: Got job 0 (foreach at StationIdForUser.java:36) with 2 output partitions
16/09/01 14:47:07 INFO DAGScheduler: Final stage: ResultStage 0 (foreach at StationIdForUser.java:36)
16/09/01 14:47:07 INFO DAGScheduler: Parents of final stage: List()
16/09/01 14:47:07 INFO DAGScheduler: Missing parents: List()
16/09/01 14:47:07 INFO DAGScheduler: Submitting ResultStage 0 (MapPartitionsRDD[2] at filter at StationIdForUser.java:36), which has no missing parents
16/09/01 14:47:07 INFO MemoryStore: Block broadcast_1 stored as values in memory (estimated size 3.5 KB, free 1106.2 MB)
16/09/01 14:47:07 INFO MemoryStore: Block broadcast_1_piece0 stored as bytes in memory (estimated size 2.1 KB, free 1106.2 MB)
16/09/01 14:47:07 INFO BlockManagerInfo: Added broadcast_1_piece0 in memory on 192.168.2.2:45142 (size: 2.1 KB, free: 1106.4 MB)
16/09/01 14:47:07 INFO SparkContext: Created broadcast 1 from broadcast at DAGScheduler.scala:1012
16/09/01 14:47:07 INFO DAGScheduler: Submitting 2 missing tasks from ResultStage 0 (MapPartitionsRDD[2] at filter at StationIdForUser.java:36)
16/09/01 14:47:07 INFO TaskSchedulerImpl: Adding task set 0.0 with 2 tasks
16/09/01 14:47:07 INFO TaskSetManager: Starting task 0.0 in stage 0.0 (TID 0, 192.168.2.6, partition 0, ANY, 5509 bytes)
16/09/01 14:47:07 INFO TaskSetManager: Starting task 1.0 in stage 0.0 (TID 1, 192.168.2.13, partition 1, ANY, 5509 bytes)
16/09/01 14:47:07 INFO CoarseGrainedSchedulerBackend$DriverEndpoint: Launching task 0 on executor id: 3 hostname: 192.168.2.6.
16/09/01 14:47:07 INFO CoarseGrainedSchedulerBackend$DriverEndpoint: Launching task 1 on executor id: 0 hostname: 192.168.2.13.
16/09/01 14:47:08 INFO BlockManagerInfo: Added broadcast_1_piece0 in memory on 192.168.2.6:48243 (size: 2.1 KB, free: 366.3 MB)
16/09/01 14:47:08 INFO BlockManagerInfo: Added broadcast_0_piece0 in memory on 192.168.2.6:48243 (size: 20.2 KB, free: 366.3 MB)
16/09/01 14:47:08 INFO BlockManagerInfo: Added broadcast_1_piece0 in memory on 192.168.2.13:48271 (size: 2.1 KB, free: 366.3 MB)
16/09/01 14:47:08 INFO BlockManagerInfo: Added broadcast_0_piece0 in memory on 192.168.2.13:48271 (size: 20.2 KB, free: 366.3 MB)
16/09/01 14:47:10 INFO TaskSetManager: Finished task 1.0 in stage 0.0 (TID 1) in 2554 ms on 192.168.2.13 (1/2)
16/09/01 14:47:10 INFO TaskSetManager: Finished task 0.0 in stage 0.0 (TID 0) in 2921 ms on 192.168.2.6 (2/2)
16/09/01 14:47:10 INFO TaskSchedulerImpl: Removed TaskSet 0.0, whose tasks have all completed, from pool
16/09/01 14:47:10 INFO DAGScheduler: ResultStage 0 (foreach at StationIdForUser.java:36) finished in 2.930 s
16/09/01 14:47:10 INFO DAGScheduler: Job 0 finished: foreach at StationIdForUser.java:36, took 3.130529 s
16/09/01 14:47:10 INFO SparkUI: Stopped Spark web UI at http://192.168.2.2:4041
16/09/01 14:47:10 INFO StandaloneSchedulerBackend: Shutting down all executors
16/09/01 14:47:10 INFO CoarseGrainedSchedulerBackend$DriverEndpoint: Asking each executor to shut down
16/09/01 14:47:10 INFO MapOutputTrackerMasterEndpoint: MapOutputTrackerMasterEndpoint stopped!
16/09/01 14:47:10 INFO MemoryStore: MemoryStore cleared
16/09/01 14:47:10 INFO BlockManager: BlockManager stopped
16/09/01 14:47:10 INFO BlockManagerMaster: BlockManagerMaster stopped
16/09/01 14:47:10 INFO OutputCommitCoordinator$OutputCommitCoordinatorEndpoint: OutputCommitCoordinator stopped!
16/09/01 14:47:10 INFO SparkContext: Successfully stopped SparkContext
16/09/01 14:47:10 INFO ShutdownHookManager: Shutdown hook called
16/09/01 14:47:10 INFO ShutdownHookManager: Deleting directory /tmp/spark-5b4d875e-2252-4767-b63b-b297b9d559f9
关于提交经纬度到spark集群:
①参考网络资料,大抵是基于spark1.4.1-Hadoop2.6.0(而我们的环境是spark2.0.0-Hadoop2.6.0),正因为版本的不一致,导致教程与实操出现出入;
②先测试单机版jar,本地需引入单独开发的jar所依赖的spark包;
③然后测试集群,需要把多余jar包去掉(通过程序遍历匹配);
④提交任务,却执行失败(发现教程的某些参数在新版本中不需要写前缀);
⑤web服务器环境(需拷入spark的200多个jar包)的spark包与项目框架包存在大量冲突,所以web版嵌入调用spark程序不是一种好的解决方案;
⑥通过Java程序执行Linux命令,来执行提交spark任务的jar包,解决jar包冲突问题。
思路:把提交spark任务的程序与uhuibao项目分离,通过Java程序执行外部环境的Linux指令,以执行spark-task.jar,并把经度纬度设置为指令参数(它依赖于spark的众多包)。
controller层
package cn.sibat.uhuibao.api;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import javax.ws.rs.DefaultValue;
import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.Produces;
import javax.ws.rs.QueryParam;
import javax.ws.rs.core.MediaType;
import cn.sibat.uhuibao.redis.service.RealTimeUserService;
import cn.sibat.uhuibao.redis.service.impl.RealTimeUserServiceImpl;
import cn.sibat.uhuibao.util.JsonUtil;
import cn.sibat.uhuibao.util.Status;
/**
* 提交任务到spark集群执行
*
* @author nanphonfy
*
*/
@Path("spark")
public class SparkApi {
@GET
@Path("recommend")
@Produces(MediaType.APPLICATION_JSON)
public String searchRealTimeRecommendation(
@QueryParam("lng") @DefaultValue("null") String lng,
@QueryParam("lat") @DefaultValue("null") String lat) {
if (lng == null || lat == null || lng.isEmpty() || lat.isEmpty()) {
return JsonUtil.getResponse(Status.PARA_ERROR).toString();
}
Runtime rt = Runtime.getRuntime();
String command = "java -jar .../apache-tomcat-7.0.70/webapps/spark-task.jar "
+ lng + " " + lat;
System.out.println(command);
new Thread(new Runnable() {// 以让spark有充足的时间做测试
@Override
public void run() {
try {
Thread.sleep(1000 * 10);// 睡眠10秒
System.out.println("等待10秒!");
} catch (InterruptedException e) {
e.printStackTrace();
}
}
});
try {
rt.exec(command);// 执行Linux命令
} catch (IOException e) {
e.printStackTrace();
return JsonUtil.getResponse(Status.SYS_ERROR).toString();
}
System.out.println("执行成功");
String key = lng + "," + lat;
RealTimeUserService rs = RealTimeUserServiceImpl.getInstance();
String list = rs.getRealTimeRecommendation(key);
if (list == null) {
return JsonUtil.getResponse(Status.NOT_FOUND).toString();
} else {
String[] result = list.split(",");
int len = result.length;
List<String> values = new ArrayList<String>();
for (int i = 0; i < len; i++) {
values.add(result[i].trim());
}
return JsonUtil.getDataResponse(Status.OK, values).toString();
}
}
}
该项目的控制层是用web service框架Jersey,而spark包也存在Jersey包,版本不一定与项目一致。除此之外,想嵌入到一个成型的项目,势必会引起冲突,必须手工除之,然而没有这个必要。
“由于调用 Runtime.exec方法所创建的子进程没有自己的终端或控制台,因此该子进程的标准IO(如stdin,stdou,stderr)都通过Process.getOutputStream(),Process.getInputStream(), Process.getErrorStream() 方法重定向给它的父进程了”
参考:
http://blog.csdn.net/fansy1990/article/details/48001013
http://wangbaoaiboy.blog.163.com/blog/static/52111910201111892938552/
作者: @nanphonfy
Email: nanphonfy (Nfzone) gmail.com 请将(Nfzone)换成@