【霹雳吧啦】手把手带你入门语义分割5:PyTorch 官方实现的 FCN 网络结构(Resnet50 Backbone 、FCN Head、Bilinear Interpolate)

目录

前言

一、原论文实现的 FCN 网络结构

二、PyTorch 官方实现的 FCN 网络结构

1、FCN 网络结构 

2、Bottleneck1 和 Bottleneck2

3、FCN Head 和 Bilinear Interpolate

三、PyTorch 官方实现的 FCN 源代码

最后说些话


前言

这篇文章是我根据 B 站 霹雳吧啦Wz 的《深度学习:语义分割篇章》中的 PyTorch 官方实现的 FCN 网络结构 所作的学习笔记,主要介绍了 PyTorch 官方实现的 FCN 网络结构,希望能为正在学习语义分割的小伙伴们提供一些帮助ヾ(^▽^*))) 因为才刚刚开始接触语义分割,所以在表达上可能比较幼稚,希望王子公主们多多包涵啦!如果存在问题的话,请大家直接指出噢~

在做笔记的过程中,我还参考了这篇博客:语义分割|学习记录(5)Pytorch官方实现的FCN网络结构-CSDN博客

一、原论文实现的 FCN 网络结构

相关论文:Fully Convolutional Networks for Semantic Segmentation

关于原论文的 FCN 网络结构,我在之前的文章中有具体的说明,文章链接贴在这里啦:

【霹雳吧啦】手把手带你入门语义分割3:FCN 网络结构详解 & FCN-32s FCN-16s FCN-8s & Convolutionalization & 损失计算 & 评价指标-CSDN博客文章浏览阅读320次,点赞16次,收藏12次。这篇文章是作者根据 B 站 霹雳吧啦Wz 的《深度学习:语义分割篇章》所作的第三篇学习笔记,主要介绍了 FCN 网络模型的相关概念,Convolutionalization 的引入和过程,然后详细介绍了 FCN-32s 、FCN-16s 和 FCN-8s 这三种网络模型,最后简单讲解了损失计算和语义分割评价指标。作者小白,请多包涵!https://blog.csdn.net/nanzhou520/article/details/134854489

二、PyTorch 官方实现的 FCN 网络结构

PyTorch 官方实现的 FCN 网络结构与这篇论文在当年提出的 FCN 网络结构稍有不同,因为如今在 backbone 这块有了更多的选择:

  •  原论文实现 FCN 网络结构时采用的 backbone 是 VGG16 网络
  •  PyTorch 官方实现 FCN 网络结构时采用的 backbone 是 Resnet50 网络

1、FCN 网络结构 

 将下面的 FCN 网络结构与上面的 ResNet 网络详解对应起来:

  •  FCN 的 计算机卷积 对应 ResNet 中的 conv1( 同 VGG16 网络 )
  •  FCN 的 Maxpool2d 对应 ResNet 中 conv2_x 的 max pool( 同 VGG16 网络 )
  •  FCN 的 Layer1 对应 ResNet 中 conv2_x 的 3 个残差结构( 同 VGG16 网络 )
  •  FCN 的 Layer2 对应 ResNet 中 conv3_x 的 4 个残差结构( 同 VGG16 网络 )
  •  FCN 的 Layer3 对应 ResNet 中 conv4_x 的 6 个残差结构,Layer3 含 1个 Bottleneck1 和 5 个 Bottleneck2( 区别 )
  •  FCN 的 Layer4 对应 ResNet 中 conv5_x 的 3 个残差结构,Layer4 含 1个 Bottleneck1 和 2 个 Bottleneck2( 区别 )

2、Bottleneck1 和 Bottleneck2

我们再来具体讲解 Bottleneck1 和 Bottleneck2 的结构:

首先,Bottleneck1 对应原来的虚线残差结构,与 ResNet 中的区别在于它将捷径分支上 1 x 1 卷积层的步距 s 改成了 1 。在 ResNet 网络中的虚线残差结构会将输入特征图的宽高缩小为原来的一半,也就是进行下采样操作,而在这里没有进行下采样操作,因为在语义分割中,如果下采样倍率过大,还原回原图的尺寸时将会影响最终效果。除此之外, 3 x 3 卷积层的步距 s 也改成了 1 ,并引入了膨胀系数 r 。Bottleneck2 的改变类似于 Bottleneck1 ,也同样引入了 膨胀卷积

在 FCN 网络的 Layer3 和 Layer4 中都有对应的 Bottleneck1 和 Bottleneck2 ,并给它们赋予了不同的 r 值。

         

3、FCN Head 和 Bilinear Interpolate

经过 Resnet50 Backbone 后,会接着通过 FCN Head 模块:

  •  经过一个 3 x 3 的卷积层,输入特征图的 channel 数将被调整为原来的四分之一,即 512
  •  经过一个 Dropout 层
  •  经过一个 1 x 1 的卷积层,调整特征层的 channel 数为类别个数 num_classes

经过 FCN Head 模块后,会接着通过 Bilinear Interpolate,即通过双线性插值的方法还原回原图的尺寸。

【补充】关于右侧的另一个 FCN Head 模块,官方给出的理由是:防止误差梯度没办法传递到网络浅层,因此在这里引入辅助分类器。训练时可以启用这个辅助分类器,但实际部署到真实环境后,我们只会使用 output ,而不会使用辅助分类器的 Aux Output ,因此我们可以将辅助分类器这个模块删除,从而提升 FCN 的网络性能。

三、PyTorch 官方实现的 FCN 源代码

关于 PyTorch 官方实现的 FCN 网络结构,霹雳吧啦将其源代码进行了精简,点击【FCN】就可以跳转至 GitHub 进行查看噢~

【彩蛋】为了让王子公主们能够更方便地下载相关代码,我在这里放置了【Download】按钮 (●'◡'●) 值得注意的是,下载的代码是霹雳吧啦所有课程的代码,FCN 网络相关的代码在 \deep-learning-for-image-processing-master\pytorch_segmentation\fcn 目录下哟~

最后说些话

致亲爱的王子公主们:这篇文章可能比较简短,只是大概讲述了 PyTroch 官方实现的 FCN 网络结构,没有对其源码进行解析,后面有时间的话,微臣会在看完 FCN源码解析(PyTorch)视频后上传相关的学习笔记!到时会把文章链接贴在这里的ヾ(•ω•`)o

  • 30
    点赞
  • 31
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 3
    评论
fcn语义分割是一种基于全卷积神经网络的图像分割方法,可以对图像中的每个像素进行分类,从而实现对整张图像的语义分割。以下是fcn语义分割pytorch实现步骤: 1. 定义模型:使用pytorch定义全卷积神经网络模型,可以使用已经训练好的预训练模型,如VGG16等。 2. 加载数据集:加载训练集和测试集,并对数据进行预处理,如归一化、裁剪等。 3. 训练模型:使用训练集对模型进行训练,并在验证集上进行验证,可以使用交叉熵损失函数和随机梯度下降等优化算法。 4. 测试模型:使用测试集对训练好的模型进行测试,并计算模型的准确率、召回率、F1值等指标。 5. 可视化结果:将模型输出的分割结果可视化,可以使用matplotlib等库进行可视化。 以下是一个简单的fcn语义分割pytorch实现示例: ```python import torch import torch.nn as nn import torch.optim as optim from torchvision import models # 定义fcn模型 class FCN(nn.Module): def __init__(self, num_classes): super(FCN, self).__init__() self.features = models.vgg16(pretrained=True).features self.conv1 = nn.Conv2d(512, num_classes, kernel_size=1) self.conv2 = nn.Conv2d(256, num_classes, kernel_size=1) self.conv3 = nn.Conv2d(128, num_classes, kernel_size=1) def forward(self, x): x = self.features(x) x1 = self.conv1(x) x = nn.functional.upsample_bilinear(x1, scale_factor=32) x2 = self.conv2(x) x = nn.functional.upsample_bilinear(x2, scale_factor=16) x3 = self.conv3(x) x = nn.functional.upsample_bilinear(x3, scale_factor=8) return x # 加载数据集 train_dataset = ... test_dataset = ... # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9) # 训练模型 for epoch in range(num_epochs): for i, (inputs, labels) in enumerate(train_dataset): optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() # 测试模型 for i, (inputs, labels) in enumerate(test_dataset): outputs = model(inputs) # 计算指标 # 可视化结果 ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

作者正在煮茶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值