零点、驻点、拐点、极值点、最值点的定义、几何意义、求解方法

一、零点

1. 定义

满足 f(x)=0 的 x 值,也就是方程的解、根。

2. 几何意义

函数图像与 x 轴的交点或切点。

3. 求法

解方程 f(x)=0。

二、驻点

1. 定义

一阶导数 f′(x)=0 或 f′(x) 不存在的点。

2. 几何意义

函数图像在该点的 切线水平(斜率为零)或 导数不存在(如尖点)。

3. 求法

①求导 f′(x)。
②解方程 f′(x)=0 和 找出 f′(x) 不存在 的点。

三、拐点

1. 定义

二阶导数 f′′(x) 变号的点,即曲线凹凸性改变的点。

2. 几何意义

函数图像由 凸变凹 或 由 凹变凸。

3. 求法

①求二阶导数 f′′(x)。
②解 f′′(x)=0 或找出 f′′(x) 不存在的点。
③验证这些点左右两侧 f′′(x) 是否变号。

四、极值点

1. 定义

极大值点:在某个邻域内,f(x) 在该点的值最大。
极小值点:在某个邻域内,f(x) 在该点的值最小。

2. 几何意义

函数图像的局部最高点或最低点。

3. 求法

五、最值点

1. 定义

最大值点:在定义域内,f(x) 在该点的值最大。
最小值点:在定义域内,f(x) 在该点的值最小。

2. 几何意义

函数图像的全局最高点或最低点。

3. 求法

找到所有极值点和区间端点。
比较这些点的函数值,最大的为最大值点,最小的为最小值点。

六、关系总结

驻点是极值点的候选点,但并非所有驻点都是极值点(如 f(x)=x^3在 x=0处)。
拐点是凹凸性改变的点,可能与极值点重合,也可能不重合。
最值点可能是极值点或区间端点。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

脑子不好真君

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值