线性代数的本质 - 10 - 特征向量与特征值

特征值和特征向量

A A n 阶矩阵,如果数 λ λ n n 维非零列向量 x 使关系式

Ax⃗ =λx⃗  A x → = λ x →
成立,那么,这样的数 λ λ 称为矩阵 A A 的特征值,非零向量 x 称为 A A 的对应于特征值 λ 的特征向量。

以上是特征值和特征向量的定义,根据之前学过的线性变换的知识,我们可以这样解读特征值和特征向量:

  • 空间经过线性变换 A A 之后,如果有向量还保持着原来的位置(可反向),即这个向量还留在它自己原来的张成空间里,那么这个向量就是 A 的特征向量。显然找到一个特征向量,就找到了无数个。向量位置不变,但大小可以变,大小变化的倍数,就是特征值 λ λ

如何求解 Ax⃗ =λx⃗  A x → = λ x → ,稍作整理可以得到

(AλE)v⃗ =0⃗  ( A − λ E ) v → = 0 →
,根据之前所学,只有矩阵将空间压缩到更低的维度时,才有可能存在一个非零向量,使得它被压缩成了 0⃗  0 → ,而空间压缩就对应于矩阵行列式为 0 0 ,所以只需要令
det(AλE)=0
即可。

注意:

  • 不是每个线性变换都有特征值和特征矩阵,比如二维空间旋转90度的变换,每一个向量都离开了原来的位置。通常没有 λ λ 没有实数解表示着某种旋转。
  • 同一个特征值可能对应多个向量,比如一个将所有向量拉伸为 2 倍的变换,特征值是2,平面内的每一个向量都是属于这个特征值的特征向量。

特征基

如果基向量都是特征向量,会发生什么?

这意味着所有的基向量都是特征向量,矩阵的对角元是它们所属的特征值,这是个对角矩阵。

对角矩阵定义:除对角线以外其他元素均为0的矩阵被称为对角矩阵。

对角矩阵在很多方面都更加容易处理:

  • 如果计算对角矩阵 A A n 次幂,只需要将每一个对角元 aii a i i n n 次幂,变为 aiin 即可。但非对角矩阵就不能这么方便的计算。
如何转化为对角矩阵?

如果一个变换 H H 的所有特征向量,能张成全空间,那么我就可以变换坐标系,使得这些特征向量就是基向量。

方法如下:

  • 首先要再次明确,不是所有矩阵都能对角化,必须满足上面的条件。

  • 将新的基向量,也就是选出来当作基底的特征向量,作为矩阵的列组成一个矩阵,称为基变换矩阵 A.

    • 那么 A1HA A − 1 H A 就是在 A A 空间的语言下描述的 H 变换。而且 A1HA A − 1 H A 一定是一个对角矩阵,对角元是特征值。之所以是对角矩阵,是因为我们是以位置不变的特征向量来构造 A A 的,所以 H 这个变换在 A A 空间看来,只是让 A 的基向量进行了缩放而已。
    • 这样就得到了对角矩阵,可以在运算完之后再换回原空间的表述。
    • 一组基向量(同样是特征向量)构成的集合被称为一个“特征基”。

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值