前情提要:
,
是
的一个基,则
是
子空间
在(1)下的矩阵为对角阵
特征值与特征向量
1.定义:
,若
,则称
为
的一个特征值,
为
的属于特征值
的一个特征向量
例一:
一定有特征值k,
中任一非零向量都是属于k的特征向量
例二:
无特征值
2.性质:
1)一个特征向量只属于一个特征值,一个特征值可对于无穷多个特征向量
2)
为
的特征值,
可逆,则
为
的特征值
3)
为
的特征值,
,
为
的一个特征值
4)
生成一维
子空间
是
的特征向量
5)
是
子空间
特征值与特征向量的求法
在
下的矩阵A
- 求特征方程
的解,即求得
的特征值
- 解齐次线性方程组
的解空间的一个基,即解得 的属于特征值
的一个特征向量在(1)的坐标,即得
的属于
的全部特征向量
例1:
求的特征值和特征向量
的一个基:
基础解系(1,0,...,0)
特征向量为1
全体特征向量为k(属于0),其中k为F中任意的非零数
ex1. 已知 为
的一个基
在(1)下的矩阵为
求的特征值和特征向量