线性代数的本质 - 06 - 逆矩阵、列空间与零空间

线性方程组、逆矩阵

矩阵是解线性方程组很好的工具。

线性方程组长这个样子:

  • 未知量放在左边
  • 常数项放右边
  • 未知量竖直对齐
  • 必要时补0

我们就可以将一个线性方程组写成这样
这里写图片描述

同样,我们可以从几何的角度解释这个方程, Ax⃗ =v⃗  A x → = v → 意味着寻找一个向量 x⃗  x → 使得 x⃗  x → 在经过线性变换 A A 后和v重合。

解这个方程依赖于矩阵 A A 所代表的变换是将空间降维了还是维度不变。所以分两种情况

  • det(A)0 此时,有且仅有一个向量是经过 A A 变换后和v重合,所以让 v⃗  v → 怎么变来的就怎么原路变回去。逆向变回去的过程,实际上对应了另一个线性变换,被称作 A1 A − 1 。一旦找到了 A1 A − 1 ,那么就可以得到 x⃗ =A1v⃗  x → = A − 1 v →

    • det(A)=0 d e t ( A ) = 0 此时,变换 A A 将空间压缩到了更低的维度,此时没有A1,就像不能将一条线“解压缩”为一个平面。如果是齐次方程组,则一定有无数组解。如果是非齐次,则有可能无解也有可能无穷多解。
    • 如果一个变换 A A 将空间压缩到了一条线上,那么就说A的秩是1。如果压缩成一个平面,就是2。 所以,”秩“代表着变换后空间的维数。

      比如对于 2×2 2 × 2 的矩阵,秩最大就是2,意味着基向量仍旧能张成整个二维空间。但对于 3×3 3 × 3 矩阵,秩为2意味着空间被压缩了。

      列空间

      一个矩阵的列空间就是这个矩阵所有的变换结果的集合,无论是维度不变还是被压缩成一个面、一个直线等。之所以叫列空间,其实就是变换后的基向量所张成的空间,而基向量就是矩阵的列。

      所以秩的更精确的定义是列空间的维数。当秩达到最大时,意味着秩与列数相等,称为满秩。

      零向量一定包含在列空间中,因为线性变换必须保持原点位置不变。对于一个满秩变换来说,唯一能在变换后落在原点的就是零向量。对于一个非满秩矩阵来说,它将空间压缩到一个更低的维度上,会有一系列向量压缩到原点。

      零空间

      变换后落在原点的向量的集合,这个集合被称为所选矩阵的”零空间“或”核“。变换后一些向量落在原点,从这个意义讲”零空间“就是这些向量构成的空间。

      对线性方程组来说,当 v⃗  v → 恰好是零向量,即 Ax⃗ =[00] A x → = [ 0 0 ] 时,零空间给出的就是这个向量方程的所有可能解。

      非方阵

      我们之前说的矩阵,都是方阵,比如用 2×2 2 × 2 矩阵表示二维向量到二维向量的变换。但是如果是个非方阵,那它的几何意义又是什么呢?

      比如一个二维向量到一个三维向量的变换。

      这里写图片描述

      这个矩阵表示将一个二维向量变换到三维。矩阵有两列,说明原向量有两个基向量;有三行,说明每一个基向量在变换后都用三个独立的坐标来描述。这个矩阵的列空间是三维空间中一个过原点的二维平面。但是这个矩阵仍然是满秩的,因为列空间的维数与输入空间的维数相等。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值