opencv学习之图像显示和腐蚀

1.调用Opencv的头文件OpenCV2/opencv.hpp
2.建立程序的存储空间
3.进入主程序
1.用imread载入图像 调用格式均用双引号来处理
2.用imshow显示图像
3.用waitKey();函数来等待任意按键的按下
以上就是图像显示的相关的介绍
1.头文件的调用向这样的简单图像处理有两种头文件得调用通用用法#include<opencv2/opencv.hpp>或者
分开调用#include<opencv2/imgproc/imgproc.hpp>
#include<opencv2/highgui/highgui.hpp>
2.命名程序的存放空间
3.进入主函数,
1.载入原图imread;
2.显示原图imshow;
3.创建图像腐蚀的结构元素,其实就是一个矩阵用Mat来存储创建形式为Mat element=getStructuringElement(MORPH_RECT,Size(,));
4.创建一个Mat的变量的数据用来存放进行腐蚀后的图像,用erode函数进行腐蚀,调用格式是erode(原图像,腐蚀后的图像,创建的结构元素)。
5.显示腐蚀后的图像imshow();
6.waitkey();等待按键的按下
以上是图像腐蚀的流程

下面给出测试程序
1.图像显示
#include<opencv2/opencv.hpp>
using namespace cv;
void main()
{
Mat img=imread(“ruxue1.jpg”);
imshow(“许文涛”,img);
waitKey(0);
}
2.图像腐蚀
//图像腐蚀是形态学图像处理中的内容用图像中暗的部分腐蚀掉图像中高亮的部分
//#include<opencv2/opencv.hpp>
#include<opencv2/highgui/highgui.hpp>
#include<opencv2/imgproc/imgproc.hpp> //目前头文件得两种调用方式
using namespace cv;
int main()
{
Mat img=imread(“ruxue1.jpg”); //载入图像
imshow(“许文涛原图”,img); //显示图像
//进行图像腐蚀的结构元素的创建,结构元素是矩阵的类型所以用Mat来创建

Mat element=getStructuringElement(MORPH_RECT,Size(15,15));
Mat dimg;    //定义接收腐蚀后图像的数据内存
erode(img,dimg,element);     //和matlab中的imerode相对应,腐蚀函数的调用过程
imshow("腐蚀后的图像",dimg);
waitKey(0);
return 4;      //返回给主函数接收的值

}
opencv总接着之路一直在路上,下个技术就是 visual slam这是一个比较大的方向慢慢的在我的博客中分享

OpenCV中,`erode()`函数是一种图像腐蚀操作,主要用于去除图像边缘的噪声点,使物体边界变得更加清晰。腐蚀操作通过在图像上滑动一个称为“结构元素”(kernel)的小矩阵,如果该矩阵的所有元素都与原图像对应位置相匹配,则原像素被替换为背景值(通常是黑色或最暗色)。这样可以逐渐缩小物体的形状,使其边缘变得更为锐利。 以下是`erode()`的基本语法: ```python cv2.erode(src, kernel, anchor=(-1,-1), iterations=1, borderType=cv2.BORDER_CONSTANT) ``` 参数说明: - `src`: 要进行腐蚀操作的源图像,通常为8位灰度图像或32位单通道图像。 - `kernel`: 结构元素,它可以是预定义的形状(如矩形、十字、圆形等),也可以自定义为numpy数组。 - `anchor`: 指定结构元素中心相对于原始像素的位置,默认为(-1,-1),表示中心像素。 - `iterations`: 反复腐蚀的次数,增加次数可以使边缘更明显地收缩。 - `borderType`: 边界处理模式,比如`cv2.BORDER_CONSTANT`指定保持原边界不变,`cv2.BORDER_REFLECT`则反映边界值。 下面是一个示例,展示如何使用`erode()`函数: ```python import cv2 import numpy as np # 读取图像并转换为灰度 img = cv2.imread('image.jpg', cv2.IMREAD_GRAYSCALE) original_img = img.copy() # 定义结构元素,这里用一个3x3的矩形 kernel = np.ones((3,3), np.uint8) # 对图像进行腐蚀操作 erosion_img = cv2.erode(img, kernel) # 显示对比 cv2.imshow('Original', original_img) cv2.imshow('Eroded', erosion_img) cv2.waitKey(0) cv2.destroyAllWindows() ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值