华北电力大学《随机过程·2020年冬》复习笔记

pdf版本笔记的下载地址: 华北电力大学《随机过程·2020年冬》复习笔记(访问密码:3834)

ch1 预备知识

分布

分布名称概率密度函数期望 E E E方差 D D D
二项分布 P { k } = C n k   p k ( 1 − p ) n − k n = 1 , 2 , . . . P\{k\}=C_n^k \, p^k (1-p)^{n-k} \qquad n=1,2,... P{k}=Cnkpk(1p)nkn=1,2,... E = n p E=np E=np D = n p ( 1 − p ) D=np(1-p) D=np(1p)
均匀分布 f ( x , a , b ) = { 1 b − 1 , a ≤ x ≤ b 0 , 其 他 f(x,a, b) = \left\{ \begin{array}{ll} \frac{1}{b-1} , & a \leq x \leq b \\ 0, & 其他\end{array} \right. f(x,a,b)={b11,0,axb E = a + b 2 E=\frac{a+b}{2} E=2a+b D = ( b − a ) 2 12 D=\frac{(b-a)^2}{12} D=12(ba)2
泊松分布 p { k } = e − λ λ k k ! n = 1 , 2 , . . . p\{k\} = e^{-\lambda} \frac{\lambda^k}{k!} \qquad n=1,2,... p{k}=eλk!λkn=1,2,... E = λ E=\lambda E=λ D = λ D=\lambda D=λ
指数分布 f ( x , λ ) = { λ e − λ x , x ≥ 0 0 , x < 0 f(x,\lambda) = \left\{ \begin{array}{ll}\lambda e^{-\lambda x} , & x \geq 0 \\0, & x<0\end{array} \right. f(x,λ)={λeλx,0,x0x<0 E = 1 λ E=\frac{1}{\lambda} E=λ1 D = 1 λ 2 D=\frac{1}{\lambda^2} D=λ21

全概率公式和全期望公式

  • 全概率公式:

    P ( B ) = ∑ k = 1 n P ( B ∣ A k ) P ( A k ) P(B)=\sum_{k=1}^{n} P\left(B \mid A_{k}\right) P\left(A_{k}\right) P(B)=k=1nP(BAk)P(Ak)
    推广:

    • Y Y Y离散时:
      P ( A ) = ∑ j P ( A ∣ Y = y j ) P ( Y = y j ) P(A) = \sum_{j} P(A|Y=y_j) P(Y=y_j) P(A)=jP(AY=yj)P(Y=yj)

    • Y Y Y连续时:
      P ( A ) = ∫ − ∞ + ∞ P ( A ∣ Y = y j ) f Y ( y ) d y P(A) = \int_{-\infty}^{+\infty} P(A|Y=y_j) f_Y(y) dy P(A)=+P(AY=yj)fY(y)dy

  • 全期望公式

    • Y Y Y离散时:
      E ( X ) = ∑ j E ( X ∣ y j ) P ( Y = y j ) E(X) = \sum_j E(X|y_j) P(Y=y_j) E(X)=jE(Xyj)P(Y=yj)

    • Y Y Y连续时:
      E ( X ) = ∫ − ∞ + ∞ E ( X ∣ y ) f Y ( y ) d y E(X) = \int_{-\infty}^{+\infty} E(X|y) f_Y(y) dy E(X)=+E(Xy)fY(y)dy

Γ \Gamma Γ函数

Γ \Gamma Γ函数表达式:
Γ ( α ) = ∫ 0 + ∞ e − x x α − 1 d x \Gamma(\alpha) = \int_0^{+\infty} e^{-x} x^{\alpha-1} dx Γ(α)=0+exxα1dx
初值:
Γ ( 1 ) = 1 , Γ ( 1 2 ) = ( π ) \Gamma(1) = 1, \quad \Gamma(\frac{1}{2})=\sqrt{(\pi)} Γ(1)=1,Γ(21)=(π)
递推关系:
Γ ( n ) = ( n − 1 )   Γ ( n − 1 ) = ( n − 1 ) ! ( x 的系数的阶乘) \Gamma(n) = (n-1) \, \Gamma(n-1) = (n-1)! \qquad\qquad\qquad \text{($x$的系数的阶乘)} Γ(n)=(n1)Γ(n1)=(n1)!(x的系数的阶乘)

ch2 随机过程的基本概念

§2.3 随机过程的数字特征

给定随机过程 X T = { X ( t ) , t ∈ T } X_T=\{ X(t), t \in T \} XT={X(t),tT},定义数字特征如下:

  • 均值函数:
    m x ( t ) ≜ E [ X ( t ) ] m_x(t) \triangleq E[X(t)] mx(t)E[X(t)]

  • 自相关函数:
    R X ( s , t ) ≜ E [ X ( s ) ⋅ X ( t ) ] R_X(s,t) \triangleq E[X(s) \cdot X(t)] RX(s,t)E[X(s)X(t)]

  • 自协方差函数:
    B X ( s , t ) ≜ C o v [ X ( s ) , X ( t ) ] = R X ( s , t ) − m X ( s )   m X ( t ) B_X(s,t) \triangleq Cov[X(s), X(t)] = R_X(s,t) - m_X(s) \, m_X(t) BX(s,t)Cov[X(s),X(t)]=RX(s,t)mX(s)mX(t)

  • 方差函数:
    D X ( t ) ≜ D [ X ( t ) ] = E [ ( X − E ( X ) ) 2 ] D_X(t) \triangleq D[X(t)] = E[(X - E(X))^2] DX(t)D[X(t)]=E[(XE(X))2]

  • 均方差函数:
    σ X ( t ) = D X ( t ) \sigma_X (t) = \sqrt{D_X(t)} σX(t)=DX(t)

ch3 泊松过程

§3.1 泊松过程的定义

  • 计数过程: 若 N ( t ) N(t) N(t)表示在 ( 0 , t ] (0, t] (0,t]内事件A出现的总次数,则称随机过程 { N ( t ) , t ≥ 0 } \{N(t), t \geq 0\} {N(t),t0}为计数过程.

  • 独立增量过程: 对任意 t 1 < t 2 ≤ t 3 < t 4 ∈ T t_1 < t_2 \leq t_3 < t_4 \in T t1<t2t3<t4T, X ( t 2 ) − X ( t 1 ) X(t_2)-X(t_1) X(t2)X(t1) X ( t 4 ) − X ( t 3 ) X(t_4)-X(t_3) X(t4)X(t3)相互独立,则称随机过程 X ( t ) X(t) X(t)为独立增量过程.

  • 平稳增量过程: 对任意 s , t , h ∈ T s,t,h \in T s,t,hT, X ( t + h ) − x ( s + h ) X(t+h)-x(s+h) X(t+h)x(s+h) X ( t ) − X ( s ) X(t)-X(s) X(t)X(s)具有相同的分布,则称随机过程 X ( t ) X(t) X(t)为平稳增量过程.

  • 泊松过程: 称计数过程 { X ( t ) , t ≥ 0 } \{X(t),t \geq 0 \} {X(t),t0}是泊松过程,如果 ( t ) (t) (t)满足:

    1. X ( 0 ) = 0 X(0)=0 X(0)=0

    2. X ( t ) X(t) X(t)是独立增量过程

    3. 在任一长度为 t t t的区间中,事件A发生的次数服从参数 λ t > 0 \lambda t > 0 λt>0的泊松分布,即对任意 s , t ≥ 0 s, t \geq 0 s,t0,有:
      P { X ( t + s ) − X ( s ) = n } = e − λ t ( λ t ) n n ! n = 0 , 1 , 2 , . . . P\{ X(t+s) - X(s) = n \} = e^{- \lambda t} \frac{(\lambda t)^n}{n!} \qquad n=0,1,2,... P{X(t+s)X(s)=n}=eλtn!(λt)nn=0,1,2,...

    E [ X ( t ) ] = λ t E[X(t)]=\lambda t E[X(t)]=λt,故 λ = E [ X ( t ) ] t \lambda = \frac{E[X(t)]}{t} λ=tE[X(t)]表示过程的强度

§3.2 泊松过程的性质

  • 数字特征: 设 { X ( t ) , t ≥ 0 } \{X(t),t \geq 0 \} {X(t),t0}是参数为 λ \lambda λ的泊松过程,对任意 t , s ∈ [ 0 , + ∞ ) , s < t t , s \in [0, +\infty), s<t t,s[0,+),s<t,有:
    E [ X ( t ) − X ( s ) ] = D [ X ( t ) − X ( s ) ] = λ ( t − s ) E[X(t)-X(s)] = D[X(t) - X(s)] = \lambda (t-s) E[X(t)X(s)]=D[X(t)X(s)]=λ(ts)

    m X ( t ) = E [ X ( t ) ] = E [ X ( t ) − X ( 0 ) ] = λ t m_X(t) = E[X(t)] = E[X(t)-X(0)] = \lambda t mX(t)=E[X(t)]=E[X(t)X(0)]=λt

    σ X 2 ( t ) = D [ X ( t ) ] = D [ X ( t ) − X ( 0 ) ] = λ t \sigma_X^2(t) = D[X(t)] = D[X(t)-X(0)] = \lambda t σX2(t)=D[X(t)]=D[X(t)X(0)]=λt

    R X ( s , t ) = E [ X ( s ) , X ( t ) ] = λ s ( λ t + 1 ) R_X(s,t) = E[X(s), X(t)] = \lambda s (\lambda t + 1) RX(s,t)=E[X(s),X(t)]=λs(λt+1)

    B X ( s , t ) = R X ( s , t ) − m X ( s ) m X ( t ) = λ s B_X(s,t) = R_X(s,t) - m_X(s) m_X(t) = \lambda s BX(s,t)=RX(s,t)mX(s)mX(t)=λs

  • 等待(到达)时间 W n W_n Wn与时间间隔 T n T_n Tn的分布:

    在这里插入图片描述

    W n W_n Wn表示第 n n n个事件的等待(到达)时间, T n T_n Tn表示第 n n n个事件与第 n − 1 n-1 n1个事件出现的时间间隔

    • 时间间隔 T n T_n Tn服从参数为 λ \lambda λ的指数分布,其概率分布函数和概率密度函数:
      F T n ( t ) = P { T n ≤ t } = { 1 − e − λ t , t ≥ 0 0 , t < 0 F_{T_{n}}(t)= P\{T_{n} \leq t \}= \left\{\begin{array}{ll} 1-e^{-\lambda t}, & t \geq 0 \\ 0, & t<0 \end{array}\right. FTn(t)=P{Tnt}={1eλt,0,t0t<0

      f T n ( t ) = { λ e − λ t , t ≥ 0 0 , t < 0 f_{T_{n}}(t)= \left\{\begin{array}{ll} \lambda e^{-\lambda t}, & t \geq 0 \\ 0, & t<0 \end{array}\right. fTn(t)={λeλt,0,t0t<0

    • 到达时间 W n W_n Wn服从 Γ \Gamma Γ分布,其概率密度函数:
      f W n ( t ) = { λ e − λ t ( λ t ) n − 1 ( n − 1 ) ! , t ≥ 0 0 , t < 0 f_{W_n}(t)=\left\{\begin{array}{ll}\lambda e^{-\lambda t} \frac{(\lambda t)^{n-1}}{(n-1) !}, & t \geq 0 \\0, & t<0\end{array}\right. fWn(t)={λeλt(n1)!(λt)n1,0,t0t<0

    • 到达时间分布的推论: 设 T k T_k Tk表示强度为 λ \lambda λ的泊松过程第 k k k次的到达时间, L 1 L_1 L1表示强度为 μ \mu μ的泊松过程第1次的到达时间
      P { T k < L 1 } = ( λ λ + μ ) k P\{T_k < L_1\} = (\frac{\lambda}{\lambda + \mu}) ^ k P{Tk<L1}=(λ+μλ)k
      记: 考虑发生一个事件,该事件为事件1的概率为 λ λ + μ \frac{\lambda}{\lambda + \mu} λ+μλ.考虑接下来连续发生的 k k k件事,事件 { T k < L 1 } \{T_k < L_1\} {Tk<L1}等价于 { 接 下 来 连 续 发 生 的 k 件 事 都 是 事 件 1 } \{接下来连续发生的k件事都是事件1\} {k1}.

    • 到达时间的条件分布: 已知 [ 0 , t ] [0,t] [0,t]内事件 A A A已经发生1次,则这一事件到达时间 W 1 W_1 W1的条件分布密度函数:
      f W 1 ( s ∣ N ( t ) = 1 ) = { 1 t , 0 < s < t 0 , 其 他 f_{W_1}(s | N(t)=1)= \left\{\begin{array}{ll} \frac{1}{t}, & 0<s<t \\ 0, & 其他 \end{array}\right. fW1(sN(t)=1)={t1,0,0<s<t

    • 到达时间的条件分布: 已知 [ 0 , t ] [0,t] [0,t]内事件 A A A已经发生 n n n次,则第 k k k次事件的发生时间 W k W_k Wk的条件概率密度函数:
      f W k ( s ∣ N ( t ) = n ) = { n ! ( k − 1 ) ! ( n − k ) ! s k − 1 ( t − s ) n − k t n 0 < s < t 0 其 它 f_{W_{k}}(s | N(t)=n)= \left\{\begin{array}{cc} \frac{n !}{(k-1) !(n-k) !} \frac{s^{k-1}(t-s)^{n-k}}{t^{n}} & 0<s<t \\ 0 & 其它 \end{array}\right. fWk(sN(t)=n)={(k1)!(nk)!n!tnsk1(ts)nk00<s<t

    • 到达时间的条件联合分布: 已知 [ 0 , t ] [0,t] [0,t]内事件 A A A已经发生 n n n次,则这 n n n次到达时间 W 1 , W 2 , . . . , W n W_1,W_2,...,W_n W1,W2,...,Wn的联合条件分布密度函数:
      f W 1 , W 2 , . . . , W n ( t 1 , t 2 , ⋯   , t n ∣ N ( t ) = n ) = { n ! t n , 0 < t 1 < ⋯ < t n < t 0 , 其 他 f_{W_1,W_2,...,W_n} (t_{1}, t_{2}, \cdots, t_{n} | N(t)=n)=\left\{\begin{array}{ll} \frac{n !}{t^{n}}, & 0<t_{1}<\cdots<t_{n}<t \\ 0, & 其他 \end{array}\right. fW1,W2,...,Wn(t1,t2,,tnN(t)=n)={tnn!,0,0<t1<<tn<t

§3.3 非齐次泊松过程

  • 定义: 称计数过程 { X ( t ) , t ≥ 0 } \{X(t),t \geq 0 \} {X(t),t0}是非齐次泊松过程,如果 ( t ) (t) (t)满足:

    1. X ( 0 ) = 0 X(0)=0 X(0)=0

    2. X ( t ) X(t) X(t)是独立增量过程

    3. 在任一长度为 t t t的区间中,事件A发生的次数服从参数为 ∫ s s + t λ ( u ) d u \int_s^{s+t}\lambda(u)du ss+tλ(u)du的泊松分布,即对任意 s , t ≥ 0 s, t \geq 0 s,t0,有:
      X ( t + s ) − X ( s ) ∼ π ( ∫ s s + t λ ( u ) d u ) X(t+s) - X(s) \sim \pi(\int_s^{s+t} \lambda(u)du) X(t+s)X(s)π(ss+tλ(u)du)

    λ ( t ) \lambda(t) λ(t)称为速率函数

§3.4 复合泊松过程

  • 定义: 设 { N ( t ) , t ≥ 0 } \{N(t),t \geq 0 \} {N(t),t0}是泊松过程, { Y k , k = 1 , 2 , . . } \{Y_k,k=1,2,.. \} {Yk,k=1,2,..}是一系列独立同分布的随机变量,则称
    X ( t ) = ∑ n = 1 N ( t ) Y n X(t) = \sum_{n=1}^{N(t)} Y_n X(t)=n=1N(t)Yn
    为复合泊松过程.

  • 性质:

    1. { X ( t ) , t ≥ 0 } \{X(t),t \geq 0 \} {X(t),t0}是独立增量过程
    2. { N ( t ) , t ≥ 0 } \{N(t),t \geq 0 \} {N(t),t0}是齐次泊松过程,则 { X ( t ) , t ≥ 0 } \{X(t),t \geq 0 \} {X(t),t0}是平稳增量过程
  • 数字特征:

    • E ( X ) = E ( N ) E ( Y 1 ) E(X) = E(N) E(Y_1) E(X)=E(N)E(Y1)
    • D ( X ) = E ( N ) D ( Y 1 ) + D ( N ) E 2 ( Y 1 ) D(X) = E(N)D(Y_1) + D(N)E^2(Y_1) D(X)=E(N)D(Y1)+D(N)E2(Y1)

    { N ( t ) , t ≥ 0 } \{N(t),t \geq 0 \} {N(t),t0}是齐次泊松过程,则:

    • E X ( t ) = E N ( t ) E ( Y 1 ) = λ t E ( Y 1 ) EX(t) = EN(t)E(Y_1) = \lambda t E(Y_1) EX(t)=EN(t)E(Y1)=λtE(Y1)
    • D X ( t ) = E N ( t ) E ( Y 1 2 ) = λ t E ( Y 1 2 ) DX(t) = EN(t)E(Y_1^2)=\lambda t E(Y_1^2) DX(t)=EN(t)E(Y12)=λtE(Y12)
    • E ( X ) = E [ E ( X ∣ N ) ] = E [ N E ( Y ! ) ] = E ( N ) E ( Y 1 ) E(X)=E[E(X|N)]=E[NE(Y_!)]=E(N)E(Y_1) E(X)=E[E(XN)]=E[NE(Y!)]=E(N)E(Y1)

ch4 马尔可夫过程

§4.3 马尔可夫链的状态关系与属性

  • 周期性:

    定义 d = G C D { n : p i i ( n ) > 0 , n > 0 } d=GCD\{ n:p_{ii}^{(n)}>0, n>0 \} d=GCD{n:pii(n)>0,n>0}为状态 i i i的周期

    • d > 1 d>1 d>1,则称状态 i i i为周期的
    • d = 1 d=1 d=1,则称状态 i i i为非周期的
  • 常返性:

    定义 f i j ( n ) = P ( X n = j , X k ≠ j , 1 ≤ k ≤ n − 1 ∣ X 0 = i ) f_{ij}^{(n)} = P(X_n=j,X_k \ne j,1 \leq k \leq n-1 | X_0=i) fij(n)=P(Xn=j,Xk=j,1kn1X0=i)为首达概率

    定义 f i j = ∑ n = 1 + ∞ f i j ( n ) f_{ij} = \sum_{n=1}^{+\infty} f_{ij}^{(n)} fij=n=1+fij(n)为迟早概率

    • f i i = 1 f_{ii} = 1 fii=1,则称状态 i i i为常返的
    • f i i < 1 f_{ii} < 1 fii<1,则称状态 i i i为非常返的

    定义 T i T_i Ti表示状态 i i i的首次返回时间,定义 μ i = E ( T i ) = ∑ n = 1 + ∞ n f i i ( n ) \mu_i=E(T_i)=\sum_{n=1}^{+\infty} n f_{ii}^{(n)} μi=E(Ti)=n=1+nfii(n)表示常返状态 i i i的平均返回时间

    • μ i < ∞ \mu_i < \infty μi<,则称状态 i i i为正常返的
    • μ i = ∞ \mu_i = \infty μi=,则称状态 i i i为零常返的
  • 可达与互通性:

    互通状态的周期和常返性是相同的,但平均返回时间不一定相同.

§4.4 状态空间的分解

  • 状态空间的分解

    • 不可约↔两两互通

    • 闭集↔状态出不去

    任一马氏链的状态空间 I I I,都可以唯一分解为互不相交的子集 D , C 1 , C 2 , . . . D,C_1,C_2,... D,C1,C2,...之和,其中:

    1. D D D是所有非常返态的集合
    2. 每一个 C i C_i Ci都是不可约的常返闭集
  • (常返态的传递性): 若状态 i i i常返, i → j i \rarr j ij,则:

    1. j j j常返
    2. i ↔ j i \harr j ij
    3. f i j = 1 , f j i f_{ij}=1, f_{ji} fij=1,fji

§4.5 转移概率极限与平稳分布

  • 转移概率的极限 lim ⁡ n → ∞ p i j ( n ) \lim_{n \rarr \infty} p_{ij} ^{(n)} limnpij(n)

    • j j j为非常返或零常返态,则 lim ⁡ n → ∞ p i j ( n ) = 0 \lim_{n \rarr \infty} p_{ij} ^{(n)} = 0 limnpij(n)=0
    • j j j为正常返,非周期,则 lim ⁡ n → ∞ p i j ( n ) = f i j μ j \lim_{n \rarr \infty} p_{ij} ^{(n)} = \frac{f_{ij}}{\mu_j} limnpij(n)=μjfij
    • j j j为正常返,周期 d j > 1 d_j>1 dj>1时:
      • i → j i \rarr j ij,则 lim ⁡ n → ∞ p i j ( n ) \lim_{n \rarr \infty} p_{ij} ^{(n)} limnpij(n)不存在
      • i i i不可达 j j j,则 lim ⁡ n → ∞ p i j ( n ) = 0 \lim_{n \rarr \infty} p_{ij} ^{(n)} = 0 limnpij(n)=0
  • 平稳分布 π = ( π 1 , π 2 , . . . ) \pi = (\pi_1,\pi_2,...) π=(π1,π2,...)满足方程:
    { π = π P ∑ i ∈ I π i = 1 \left\{\begin{array}{l} \pi = \pi P \\ \sum_{i \in I} \pi_i=1 \end{array}\right. {π=πPiIπi=1

  • 若马氏链是不可约非周期的,则如下3个命题是等价的:

    • 该链为正常返
    • 该链存在极限分布
    • 该链存在平稳分布

    且当上述分布存在时,极限分布 { 1 μ i , i ∈ I } \{\frac{1}{\mu_i}, i \in I\} {μi1,iI}就是平稳分布 { π i , i ∈ I } \{\pi_i, i \in I\} {πi,iI}.

pdf版本笔记的下载地址: 华北电力大学《随机过程·2020年冬》复习笔记(访问密码:3834)

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值