随机过程学习笔记——概论


参考教材:陆大jin《随机过程及其应用》

1. 随机过程

1.1 基本概念

随机过程是这样一个过程,它不能用一个时间t的确定性函数表示,它在每个时刻的状态是随机的。

  1. 例子1:
  • y = s i n ( w t + φ ) y=sin(wt+\varphi) y=sin(wt+φ),其中 φ = π / 2 \varphi=\pi/2 φ=π/2。显然这是一个确定性过程,这个过程可以用时间t的确定性函数表示。
  • y = s i n ( w t + φ ) y=sin(wt+\varphi) y=sin(wt+φ),其中 φ \varphi φ服从 [ − π , π ] [-\pi,\pi] [π,π]的均匀分布。显然这是一个随机过程,这个过程不可以用时间t的确定性函数表示,每个时刻 t i t_i ti y y y的取值是随机的, y y y它又是随时间变化的。这个函数可以有一个现实的意义,比如生产的一批振荡器,他们的初始相位显然是随机的,但是选中一台振荡器后,它的相位就是固定的,也就是说,这个随机过程,如果随着时间t去逐步测量,它得到的总是一条正弦曲线。
  1. 例子2:
    某个餐厅,一个时刻到达的人数是随机的,也就是随机变量。如果研究一个上午各个时间的总人数,那么这就是一个随机过程

1.2 描述随机过程的方法

  1. 方法一:固定时间 t t t,则随机过程 ξ ( t ) \xi(t) ξ(t)在此时刻是随机变量,即: ξ ( t i ) \xi(t_{i}) ξ(ti)是随机变量, t i t_i ti是具体的时刻。
    既然是随机变量,那么每个时刻都可以用分布函数来描述。
    一维分布函数 F t 1 ( x 1 ) = P ( ξ ( t 1 ) < x 1 ) F_{t_1}(x_{1})=P(\xi(t_{1})<x_1) Ft1(x1)=P(ξ(t1)<x1),这个只能描述某一时刻,随机过程 ξ ( t ) \xi(t) ξ(t)的分布。
    n维分布函数 F t 1 , t 2 , . . . , t n ( x 1 , x 2 , . . . , x n ) = P ( ξ ( t 1 ) < x 1 , ξ ( t 2 ) < x 2 , . . . , ξ ( t n ) < x n ) F_{t_1,t_2,...,t_n}(x_{1},x_{2},...,x_{n})=P(\xi(t_{1})<x_1,\xi(t_{2})<x_2, ... ,\xi(t_{n})<x_n) Ft1,t2,...,tn(x1,x2,...,xn)=P(ξ(t1)<x1,ξ(t2)<x2,...,ξ(tn)<xn),这个能描述随机过程 ξ ( t ) \xi(t) ξ(t),在不同时刻的相互关系,因此这也被称为一族有限维分布函数。可以看到这一族有限维分布函数不仅描述了某一时刻 ξ ( t ) \xi(t) ξ(t)的统计规律,还描述了不同时刻 ξ ( t i ) \xi(t_i) ξ(ti), ξ ( t j ) \xi(t_j) ξ(tj)之间的相互关系。

注:

  • ξ ( t ) \xi(t) ξ(t) ξ ( w , t ) \xi(w,t) ξ(w,t)的含义相同
  • ξ ( t ) \xi(t) ξ(t) t = t k t=t_k t=tk的具体取值称为,随机过程 ξ ( t ) \xi(t) ξ(t) t = t k t=t_k t=tk的状态,记为 x ( t k ) x(t_k) x(tk)
  1. 方法二:不固定时间,一次特定的实验,随着时间去逐步测量整个过程,因此这将得到一个确定的样本函数,记为 ξ ( k ) ( t ) \xi^{(k)}(t) ξ(k)(t),有时为了避免混淆,也用 x k ( t ) x_k(t) xk(t)表示。在例子1中的随机过程,每个 x k ( t ) x_k(t) xk(t)都是正弦函数。

2. 随机过程的分类和举例

根据时间的连续与否,每个时刻随机变量取值的连续与否,可以分为4种类型。

  1. 离散参数离散型随机过程。参数集(也就是时间)是离散的,固定时间 t k t_k tk,随机变量 ξ ( t k ) \xi(t_k) ξ(tk)也是离散的。
    比如伯努利过程:一个质点每过一秒就会等概率地在数轴上向左移动或者向右移动。

  2. 连续参数离散型随机过程。参数集(也就是时间)是连续的,固定时间 t k t_k tk,随机变量 ξ ( t k ) \xi(t_k) ξ(tk)是离散的。
    比如脉冲数字通信系统,传送的信号是脉宽为 T 0 T_0 T0的脉冲信号,但是脉冲的幅度是随机变量。

  3. 连续参数连续型随机过程。参数集(也就是时间)是连续的,固定时间 t k t_k tk,随机变量 ξ ( t k ) \xi(t_k) ξ(tk)也是连续的。
    比如正弦波过程(例子1)和晶体管噪声。

  4. 离散参数连续型随机过程。参数集(也就是时间)是离散的,固定时间 t k t_k tk,随机变量 ξ ( t k ) \xi(t_k) ξ(tk)也是连续的。
    比如每隔单位时间就对晶体管噪声进行抽样。

3. 随机过程的数字特征

从以上的分析来看,随机过程的概率密度分布函数族可以完善地描述随机过程的统计特征,但是要确定这两个东西,并加以分析,往往比较困难。为了便于分析,需要引入随机过程的数字特征。

3.1 均值(数学期望)

对于一随机过程 ξ ( t ) \xi(t) ξ(t),其某一时刻 t 1 t_1 t1的取值 ξ ( t 1 ) \xi(t_1) ξ(t1)是随机变量(这一点要时刻记住,不然下面的公式就会理解不了),对于这个随机变量,可以用概率论中的均值来描述,即:
μ ξ ( t 1 ) = E ( ξ ( t 1 ) ) \mu_{\xi}(t_1)=E(\xi(t_1)) μξ(t1)=E(ξ(t1))
对于连续型随机过程,假设其分布函数为 F ξ t 1 ( x ) = P ( ξ ( t 1 ) ≤ x ) F_{\xi_{t_1}}(x)=P(\xi(t_1)\leq x) Fξt1(x)=P(ξ(t1)x),概率密度为 f ξ t 1 ( x ) f_{\xi_{t_1}}(x) fξt1(x),那么均值:
μ ξ ( t 1 ) = E ( ξ ( t 1 ) ) = ∫ − ∞ + ∞ x f ξ t 1 ( x ) d x \mu_{\xi}(t_1)=E(\xi(t_1)) =\int_{-\infty}^{+\infty}xf_{\xi_{t_1}}(x)dx μξ(t1)=E(ξ(t1))=+xfξt1(x)dx
对于离散型随机过程,假设其分布函数为 F ξ t 1 ( x ) = P ( ξ ( t 1 ) ≤ x ) F_{\xi_{t_1}}(x)=P(\xi(t_1)\leq x) Fξt1(x)=P(ξ(t1)x),那么均值:
μ ξ ( t 1 ) = E ( ξ ( t 1 ) ) = x 1 ∗ P ( ξ ( t 1 ) = x 1 ) + x 2 ∗ P ( ξ ( t 1 ) = x 2 ) + . . . + x n ∗ P ( ξ ( t 1 ) = x n ) \mu_{\xi}(t_1) = E(\xi(t_1)) \\ = x_1*P(\xi(t_1)=x_1)+x_2*P(\xi(t_1)=x_2)+...+x_n*P(\xi(t_1)=x_n) μξ(t1)=E(ξ(t1))=x1P(ξ(t1)=x1)+x2P(ξ(t1)=x2)+...+xnP(ξ(t1)=xn)

技巧
有时候并不需要真的去求概率密度为 f ξ t 1 ( x ) f_{\xi_{t_1}}(x) fξt1(x)才能算均值。
比如: y = s i n ( w t + φ ) y=sin(wt+\varphi) y=sin(wt+φ),其中 φ \varphi φ服从 [ − π , π ] [-\pi,\pi] [π,π]的均匀分布,求 μ ξ ( t 1 ) \mu_{\xi}(t_1) μξ(t1)。这个问题就变成了概率论中经典的已知X的分布,且Y=g(X),求E(Y)。所以:
μ ξ ( t 1 ) = ∫ − ∞ + ∞ x f ξ t 1 ( x ) d x = ∫ − π π s i n ( w t 1 + φ ) 1 2 π d φ \mu_{\xi}(t_1)= \int_{-\infty}^{+\infty}xf_{\xi_{t_1}}(x)dx= \int_{-\pi}^{\pi}sin(wt_1+\varphi)\frac{1}{2\pi} d\varphi μξ(t1)=+xfξt1(x)dx=ππsin(wt1+φ)2π1dφ
按照上式计算就会简单很多。

3.2 方差(二阶中心矩)

这个方差的定义与概率论中随机变量的方差定义完全一致。
σ ξ 2 ( t 1 ) = D ( ξ ( t 1 ) ) = E ( [ ξ ( t 1 ) − μ ξ ( t 1 ) ] 2 ) = E ( [ ξ ( t 1 ) − E ( ξ ( t 1 ) ) ] 2 ) \sigma_{\xi}^2(t_1)=D(\xi(t_1))=E([\xi(t_1)-\mu_{\xi}(t_1)]^2) \\ =E([\xi(t_1)-E(\xi(t_1))]^2) σξ2(t1)=D(ξ(t1))=E([ξ(t1)μξ(t1)]2)=E([ξ(t1)E(ξ(t1))]2)

3.3 自相关函数(简称:相关函数)

自相关函数是为了描述两个不同的时刻 t 1 , t 2 t_1,t_2 t1,t2的随机变量 ξ ( t 1 ) , ξ ( t 2 ) \xi(t_1),\xi(t_2) ξ(t1),ξ(t2)之间的关系,记为 R ξ ξ ( t 1 , t 2 ) R_{\xi\xi}(t_1,t_2) Rξξ(t1,t2),这是一个二阶混合原点矩。注意这两个随机变量并不独立
R ξ ξ ( t 1 , t 2 ) = E ( ξ ( t 1 ) ξ ( t 2 ) ) = ∑ i ∑ j x i x j P ( ξ ( t 1 ) = x i , ξ ( t 2 ) = x j ) = ∫ − ∞ + ∞ ∫ − ∞ + ∞ x 1 x 2 f ξ t 1 ξ t 2 ( x 1 , x 2 ) d x 1 d x 2 R_{\xi\xi}(t_1,t_2)=E(\xi(t_1)\xi(t_2)) \\ = \sum_{i}\sum_{j}x_ix_jP(\xi(t_1)=x_i,\xi(t_2)=x_j) \\ =\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}x_1x_2f_{\xi_{t_1}\xi_{t_2}}(x_1, x_2)dx_1dx_2 Rξξ(t1,t2)=E(ξ(t1)ξ(t2))=ijxixjP(ξ(t1)=xi,ξ(t2)=xj)=++x1x2fξt1ξt2(x1,x2)dx1dx2
f ξ t 1 ξ t 2 ( x 1 , x 2 ) f_{\xi_{t_1}\xi_{t_2}}(x_1, x_2) fξt1ξt2(x1,x2)是随机变量 ξ ( t 1 ) , ξ ( t 2 ) \xi(t_1),\xi(t_2) ξ(t1),ξ(t2)的联合概率密度。

3.4 自协方差函数(简称:协方差函数)

类似地,可以写出两个变量的二阶混合中心矩,记为 C ξ ξ ( t 1 , t 2 ) C_{\xi\xi}(t_1,t_2) Cξξ(t1,t2)
C ξ ξ ( t 1 , t 2 ) = E ( [ ξ ( t 1 ) − μ ξ ( t 1 ) ] [ ξ ( t 2 ) − μ ξ ( t 2 ) ] ) = ∑ i ∑ j ( x i − μ ξ ( t 1 ) ) ( x j − μ ξ ( t 2 ) ) P ( ξ ( t 1 ) = x i , ξ ( t 2 ) = x j ) = ∫ − ∞ + ∞ ∫ − ∞ + ∞ ( x 1 − μ ξ ( t 1 ) ) ( x 2 − μ ξ ( t 2 ) ) f ξ t 1 ξ t 2 ( x 1 , x 2 ) d x 1 d x 2 C_{\xi\xi}(t_1,t_2)=E([\xi(t_1)-\mu_{\xi}(t_1)][\xi(t_2)-\mu_{\xi}(t_2)]) \\ = \sum_{i}\sum_{j}(x_i-\mu_{\xi}(t_1))(x_j-\mu_{\xi}(t_2))P(\xi(t_1)=x_i,\xi(t_2)=x_j) \\ =\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}(x_1-\mu_{\xi}(t_1))(x_2-\mu_{\xi}(t_2))f_{\xi_{t_1}\xi_{t_2}}(x_1, x_2)dx_1dx_2 Cξξ(t1,t2)=E([ξ(t1)μξ(t1)][ξ(t2)μξ(t2)])=ij(xiμξ(t1))(xjμξ(t2))P(ξ(t1)=xi,ξ(t2)=xj)=++(x1μξ(t1))(x2μξ(t2))fξt1ξt2(x1,x2)dx1dx2
f ξ t 1 ξ t 2 ( x 1 , x 2 ) f_{\xi_{t_1}\xi_{t_2}}(x_1, x_2) fξt1ξt2(x1,x2)是随机变量 ξ ( t 1 ) , ξ ( t 2 ) \xi(t_1),\xi(t_2) ξ(t1),ξ(t2)的联合概率密度。
上式只是定义式,通过化简可以得到:
C ξ ξ ( t 1 , t 2 ) = R ξ ξ ( t 1 , t 2 ) − μ ξ ( t 1 ) μ ξ ( t 2 ) C_{\xi\xi}(t_1,t_2)=R_{\xi\xi}(t_1,t_2)-\mu_{\xi}(t_1)\mu_{\xi}(t_2) Cξξ(t1,t2)=Rξξ(t1,t2)μξ(t1)μξ(t2)
t 1 = t 2 t_1=t_2 t1=t2时:
σ ξ 2 ( t 1 ) = C ξ ξ ( t 1 , t 1 ) = R ξ ξ ( t 1 , t 1 ) − μ ξ ( t 1 ) μ ξ ( t 1 ) \sigma_{\xi}^2(t_1)=C_{\xi\xi}(t_1,t_1)=R_{\xi\xi}(t_1,t_1)-\mu_{\xi}(t_1)\mu_{\xi}(t_1) σξ2(t1)=Cξξ(t1,t1)=Rξξ(t1,t1)μξ(t1)μξ(t1)
这就类似于 D ( X ) = E ( X 2 ) − ( E ( X ) ) 2 D(X)=E(X^2)-(E(X))^2 D(X)=E(X2)(E(X))2

4. 两个或两个以上随机过程的联合分布和数字特征

注意,这一节考虑的是两个不同的随机过程(注意和一个随机过程的两次不同的实现是有区别的)

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,关于 jQuery 的事件,我可以和你分享一些学习笔记。 1. 绑定事件 在 jQuery 中,我们可以通过以下方式来绑定事件: ``` $(selector).event(function(){ // 事件处理程序 }) ``` 其中,`selector` 表示要绑定事件的元素,`event` 表示要绑定的事件类型,比如 `click`、`mouseover` 等等。事件处理程序则是在事件触发时要执行的代码块。 2. 多个事件绑定 我们可以通过 `on()` 方法来同时绑定多个事件: ``` $(selector).on({ event1: function(){ // 事件处理程序1 }, event2: function(){ // 事件处理程序2 } }) ``` 这样,当 `event1` 或 `event2` 中任意一个事件触发时,对应的处理程序都会被执行。 3. 解除事件 如果需要解除某个元素的事件处理程序,可以使用 `off()` 方法: ``` $(selector).off(event); ``` 其中,`event` 表示要解除的事件类型。如果不指定事件类型,则会解除该元素上所有的事件处理程序。 4. 事件委托 在 jQuery 中,我们可以使用事件委托来提高性能。事件委托是指将事件绑定到父元素上,而不是绑定到子元素上,然后通过事件冒泡来判断是哪个子元素触发了该事件。这样,当子元素数量较多时,只需要绑定一次事件,就可以监听到所有子元素的事件。 ``` $(selector).on(event, childSelector, function(){ // 事件处理程序 }) ``` 其中,`selector` 表示父元素,`event` 表示要绑定的事件类型,`childSelector` 表示要委托的子元素的选择器,事件处理程序则是在子元素触发事件时要执行的代码块。 以上是 jQuery 中事件的一些基本操作,希望对你有所帮助。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值