【qstock数据篇】行业概念板块与资金流

简介

qstock由“Python金融量化”公众号开发,试图打造成个人量化投研分析开源库,目前包括数据获取(data)、可视化(plot)、选股(stock)和量化回测(backtest)四个模块。其中数据模块(data)数据来源于东方财富网、同花顺、新浪财经等网上公开数据,数据爬虫部分参考了现有金融数据包tushare、akshare和efinance。qstock致力于为用户提供更加简洁和规整化的金融市场数据接口。可视化模块基于plotly.express和pyecharts包,为用户提供基于web的交互图形简单操作接口;选股模块提供了同花顺的技术选股和公众号策略选股,包括RPS、MM趋势、财务指标、资金流模型等,回测模块为大家提供向量化(基于pandas)和基于事件驱动的基本框架和模型。

qstock目前在pypi官网上发布,开源版本为1.1.0,意味着读者直接“pip install qstock ”安装即可使用。GitHub地址:https://github.com/tkfy920/qstock。

目前部分策略选股和策略回测功能仅供知识星球会员使用,会员可在知识星球置顶帖子上上获取qstock-1.1.1.tar.gz (强化版)安装包,进行离线安装。

下面为大家介绍qstock数据模块(data)中行业、概念板块数据和资金流数据的调用方法。

#导入qstock模块
import qstock as qs

01

指数成分股

4f84a41f66d44b0d4e142806fda82f29.png

00

获取常见指数的成分股

index_member(code)  
code : 指数名称或者指数代码

#上证50成份股
df=qs.index_member('sz50')
#查看前几行数据
df.head()

ea51c9ad2da95513ab53f9128133f501.jpeg


#沪深300成分股
qs.index_member('hs300')

d79a9ee34e472674af68054465bc77a7.jpeg


02

概念板块数据

获取同花顺概念板块名称、成分股、和行情数据

03f40e5ba83ae8f0c2efcb5c98a0a4fd.png

01

获取同花顺概念板块名称

ths_index_name(flag='概念')

flag='概念板块' or '行业板块'

#行业板块名称
name_list=qs.ths_index_name('行业')
#查看5个
name_list[:5]

['种植业与林业', '养殖业', '农产品加工', '农业服务', '煤炭开采加工']

#概念板块名称
name_list=qs.ths_index_name('概念')
#查看5个
name_list[:5]

['信创', '有机硅概念', '空气能热泵', '先进封装(Chiplet)', '减速器']

e8409af393896c3e8d37139ec4378501.png

02

概念板块成分股

获取同花顺概念板块成分股
注意,同花顺数据接口不太稳定,如报错过一段时间再试。

ths_index_member(code=None)

code:输入板块行业或概念代码或简称

#比如种植业与林业成分股
df=qs.ths_index_member('种植业与林业')
#查看前几行
df.head()

249705d88ac0d6ae47849001ad0eff6e.jpeg


#比如有机硅概念
df=qs.ths_index_member('有机硅概念')
#查看前几行
df.head()

b492e9a1d53e7b97b7036d7abe7420e2.jpeg


42ffd034d7e3d3ed7ae20728f9596923.png

03

概念指数行情数据

获取同花顺概念或行业板块指数行情数据(开盘、最高、最低、收盘和成交量)

ths_index_data(code=None)

code:输入板块行业或概念代码或简称

df=qs.ths_index_data('有机硅概念')
df.head()

25ea1d99d45000e2ed19af542159619e.jpeg

03

资金流数据

bda19049b28cb777deffcaa31b56c129.png

04

日内资金流数据

intraday_money(code)

code : 股票、债券代码

获取单只股票最新交易日的日内分钟级单子流入流出数据

#注意要在交易日交易时段才能获取到相应数据
df=qs.intraday_money('中国平安')
df.head()

7454572de77a7cd7d31e80561f22e19d.jpeg


0624b56cec43d48fc82547e7f013c58e.png

05

历史资金流向数据

hist_money(code)

code : 股票、债券代码

获取股票、债券、期货等的历史单子流入流出数据

df=qs.hist_money('中国平安')
df.tail()

b80892427aa646b267f06985fed9f38d.jpeg


af85d3846162864384497f04c7897a19.png

06

个股n日资金流

stock_money(code, ndays=[3, 5, 10, 20])

stock可以为股票简称或代码,如晓程科技或300139
ndays为时间周期或list,如3日、5日、10日等

#默认ndays=[3, 5, 10, 20]
df=qs.stock_money('中国平安')
df

e009163928df0ed158fd781a2abbe119.jpeg


df=qs.stock_money('中国平安',[10,30,60])
df.tail()

aaa208c6c94694aa080a7dda912cd620.jpeg


bc557528787208b704e4c648e3681e3b.png

07

同花顺资金流数据

获取同花顺个股、行业、概念资金流数据

ths_money(flag=None,n=None):

flag:'个股','概念','行业'

n=1,3,5,10,20分别表示n日资金累计净额

#个股20日资金流数据
df=qs.ths_money('个股',n=20)
df.tail()

c2f674ab521acdeebc06749d33ada50f.jpeg


#行业板块10日资金流数据
df=qs.ths_money('行业',n=10)
df.tail()

ab673c4d1f8d95695faabadd0e14ec27.jpeg


#概念板块5日资金流数据
df=qs.ths_money('概念',n=5)
df.tail()

4c062ed88aa0cd13e25fab7af252e6d9.jpeg

04

北向资金

5b5f42418ee16bcdee04fb24a46eae39.png

08

北向资金数据

north_money(flag=None,n=1)

flag=None,默认返回北上资金总体每日净流入数据

flag='行业',代表北向资金增持行业板块排行

flag='概念',代表北向资金增持概念板块排行

flag='个股',代表北向资金增持个股情况

n:  代表n日排名,n可选1、3、5、10、‘M’,‘Q','Y'
即 {'1':"今日", '3':"3日",'5':"5日", '10':"10日",'M':"月", 'Q':"季", 'Y':"年"}

北向资金每日净流入

#北向资金每日净流入数据
df=qs.north_money()
df.tail()

8d4b0708a43f9ea2c1432ceecd61f5a0.png

北向资金增持行业板块

#北向资金增持行业板块5日排名
df=qs.north_money('行业',5)
df.tail()

f30c74d6e3ae6e2664ed957588016ee8.jpeg

北向资金增持概念板块

#北向资金增持概念板块
df=qs.north_money('概念',5)
df.tail()

58e56c8e0bda1b547b86a4246396cdfe.jpeg


北向资金增持个股情况

#北向资金增持个股情况
#有个小bug,列名没有对应起来,该函数调用将报错,将在新版本中修正。
df=qs.north_money('个股',5)
df.tail()

f01e6f5514ef3b77f3d5497c606b410e.jpeg


后续推文将进一步分享qstock数据模块中关于基本面数据、宏观数据、财经新闻数据等的调用方法。

# 简介 qstock由“Python金融量化”公众号开发,试图打造成个人量化投研分析开源库,目前包括数据获取(data)、可视化(plot)、选股(stock)和量化回测(backtest)四个模块。其中数据模块(data)数据来源于东方财富网、同花顺、新浪财经等网上公开数据qstock致力于为用户提供更加简洁和规整化的金融市场数据接口,其中可视化模块为用户提供基于web的交互图形简单操作接口;选股模块提供了同花顺的技术选股和公众号策略选股,包括RPS、MM趋势、财务指标、资金流模型等,回测模块为大家提供向量化(基于pandas)和基于事件驱动的基本框架和模型。 读者直接在cmd或anaconda prompt上输入“pip install qstock ”进行安装,或输入“pip install -upgrade qstock”进行更新。 qstock是免费开源金融量化库,已在pypi官网和GitHub上发布,更新至1.3.5版本,添加了问财的数据访问功能,通过qstock.wencai('选股条件')调用。使用“pip install qstock ”进行安装,通过’pip install –upgrade qstock’进行更新。目前部分策略选股和策略回测功能仅供知识星球会员使用,会员可在知识星球置顶帖子上获取 qstock 的离线安装包。 关于 qstock 更详细的使用方法,请参考微信公众号Python金融量化 qstock 专题系列文章: 【qstock开源了】数据之行情交易数据qstock数据行业概念板块资金流qstock量化】数据之股票基本面数据qstock量化】数据之宏观指标和财经新闻文本 【qstock量化】动态交互数据可视化 【qstock量化】技术形态概念热点选股池 【手把手教你】使用qstock实现量化策略选股 【手把手教你】使用qstock进行量化回测 基于qstock的量化复盘自动盯盘 下面为大家介绍qstock各模块的具体调用方式和应用举例。 ```python #导入qstock模块 import qstock as qs ``` # 数据模块 # 行情交易数据接口 ## 实时行情数据 获取指定市场所有标的或单个或多个证券最新行情指标 realtime_data(market='沪深A', code=None): - market表示行情名称或列表,默认'沪深A股', '沪深京A':沪深京A股市场行情; '沪深A':沪深A股市场行情;'沪A':沪市A股市场行情 '深A':深市A股市场行情;北A :北证A股市场行情;'可转债':沪深可转债市场行情; '期货':期货市场行情;'创业板':创业板市场行情;'美股':美股市场行情; '港股':港股市场行情;'中概股':中国概念股市场行情;'新股':沪深新股市场行情; '科创板':科创板市场行情;'沪股通' 沪股通市场行情;'深股通':深股通市场行情; '行业板块':行业板块市场行情;'概念板块':概念板块市场行情; '沪深指数':沪深系列指数市场行情;'上证指数':上证系列指数市场行情 '深证指数':深证系列指数市场行情;'ETF' ETF基金市场行情;'LOF' LOF 基金市场行情 - code:输入单个或多个证券的list,不输入参数,默认返回某市场实时指标 如code='中国平安',或code='000001',或code=['中国平安','晓程科技','东方财富'] ### 某市场所有标的最新行情 ```python #获取沪深A股最新行情指标 df=qs.realtime_data() #查看前几行 df.head() ``` ```python #获取期货最新行情指标 df=qs.realtime_data('期货') #查看前几行 df.head() ``` ```python #获 -------- 该资源内项目源码是个人的毕设,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! <项目介绍> 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。 --------
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值