qstock 获取问财数据 非常实用

以下是使用 qstock 获取问财数据的详细教程,结合了多个来源的实用信息:


一、安装与配置

  1. 安装 qstock
    通过 pip 安装或更新至最新版本(当前最新开源版本为 1.3.5):

    pip install qstock
    pip install --upgrade qstock
    

    • 部分高级功能(如策略回测)需知识星球会员获取离线包。

  2. 导入模块

    import qstock as qs
    

二、核心函数:wencai()

通过 qs.wencai() 实现自然语言选股,支持技术指标、财务数据、形态分析等多维度条件筛选。

1. 基本语法
df = qs.wencai('选股条件')

参数要求:条件需用字符串格式,多个条件用逗号/分号/空格分隔。
返回数据:以 DataFrame 格式输出符合条件的股票及相关指标。


三、常用场景与代码示例

1. 涨停复盘
# 筛选近1个月上市的涨停股(排除ST)
df = qs.wencai('涨停,非ST,上市时间大于1个月')
df[['股票简称', '最新价', '涨停原因类别', '涨停封单额']]

• 示例结果:返回涨停股的关键信息,如封单额、涨停天数等。

2. 阶段表现分析
# 筛选250日内创新高的股票
df = qs.wencai('250日新高,非ST,沪深A,上市时间超过250天')
df[['股票代码', '最新价', '技术形态']]

• 应用场景:追踪长期趋势强势股。

3. 技术指标组合选股
# 均线多头排列 + MACD金叉 + 高换手率
df = qs.wencai('均线多头排列,MACD金叉,换手率大于5%')

• 支持指标:均线、MACD、KDJ、RSI 等。

4. 财务指标筛选
# 高增长企业筛选(营收增长>10%,ROE>15%)
df = qs.wencai('营业收入增长率>10%,加权净资产收益率>15%')
df[['股票简称', '营业利润增长率', '净资产收益率']]

• 财务指标:市盈率、市净率、ROE、资产负债率等。

5. 其他数据获取

新股数据qs.wencai('上市时间不足一个月新股')
可转债数据qs.wencai('可转债')
基金排名qs.wencai('基金涨幅排名')


四、数据来源与功能特性

  1. 数据源:整合东方财富、同花顺、新浪财经等公开数据。
  2. 功能模块
    数据获取(data):支持股票、基金、期货等多品类数据。
    可视化(plot):基于 Web 的交互式图表。
    选股(stock):技术面、基本面、形态选股策略。
    回测(backtest):向量化与事件驱动框架(部分需会员)。

五、注意事项

  1. 条件输入规范:避免复杂语句,优先使用问财官网支持的筛选条件。
  2. 错误处理:若安装后报错,建议检查版本或重新安装依赖库(参考网页3用户报错案例)。
  3. 数据更新:部分实时数据需依赖第三方接口,可能存在延迟。

六、扩展学习

官方文档:参考 GitHub 仓库 qstock 及系列教程。
实战案例:通过公众号“Python金融量化”获取策略选股和回测高级教程。

通过上述步骤,可快速掌握 qstock 调用问财数据的方法,适用于量化分析、策略研究等场景。

# 简介 qstock由“Python金融量化”公众号开发,试图打造成个人量化投研分析开源库,目前包括数据获取(data)、可视化(plot)、选股(stock)和量化回测(backtest)四个模块。其中数据模块(data)数据来源于东方富网、同花顺、新浪经等网上公开数据qstock致力于为用户提供更加简洁和规整化的金融市场数据接口,其中可视化模块为用户提供基于web的交互图形简单操作接口;选股模块提供了同花顺的技术选股和公众号策略选股,包括RPS、MM趋势、务指标、资金流模型等,回测模块为大家提供向量化(基于pandas)和基于事件驱动的基本框架和模型。 读者直接在cmd或anaconda prompt上输入“pip install qstock ”进行安装,或输入“pip install -upgrade qstock”进行更新。 qstock是免费开源金融量化库,已在pypi官网和GitHub上发布,更新至1.3.5版本,添加了数据访功能,通过qstock.wencai('选股条件')调用。使用“pip install qstock ”进行安装,通过’pip install –upgrade qstock’进行更新。目前部分策略选股和策略回测功能仅供知识星球会员使用,会员可在知识星球置顶帖子上获取 qstock 的离线安装包。 关于 qstock 更详细的使用方法,请参考微信公众号Python金融量化 qstock 专题系列文章: 【qstock开源了】数据篇之行情交易数据qstock数据篇】行业概念板块与资金流 【qstock量化】数据篇之股票基本面数据qstock量化】数据篇之宏观指标和经新闻文本 【qstock量化】动态交互数据可视化 【qstock量化】技术形态与概念热点选股池 【手把手教你】使用qstock实现量化策略选股 【手把手教你】使用qstock进行量化回测 基于qstock的量化复盘与自动盯盘 下面为大家介绍qstock各模块的具体调用方式和应用举例。 ```python #导入qstock模块 import qstock as qs ``` # 数据模块 # 行情交易数据接口 ## 实时行情数据 获取指定市场所有标的或单个或多个证券最新行情指标 realtime_data(market='沪深A', code=None): - market表示行情名称或列表,默认'沪深A股', '沪深京A':沪深京A股市场行情; '沪深A':沪深A股市场行情;'沪A':沪市A股市场行情 '深A':深市A股市场行情;北A :北证A股市场行情;'可转债':沪深可转债市场行情; '期货':期货市场行情;'创业板':创业板市场行情;'美股':美股市场行情; '港股':港股市场行情;'中概股':中国概念股市场行情;'新股':沪深新股市场行情; '科创板':科创板市场行情;'沪股通' 沪股通市场行情;'深股通':深股通市场行情; '行业板块':行业板块市场行情;'概念板块':概念板块市场行情; '沪深指数':沪深系列指数市场行情;'上证指数':上证系列指数市场行情 '深证指数':深证系列指数市场行情;'ETF' ETF基金市场行情;'LOF' LOF 基金市场行情 - code:输入单个或多个证券的list,不输入参数,默认返回某市场实时指标 如code='中国平安',或code='000001',或code=['中国平安','晓程科技','东方富'] ### 某市场所有标的最新行情 ```python #获取沪深A股最新行情指标 df=qs.realtime_data() #查看前几行 df.head() ``` ```python #获取期货最新行情指标 df=qs.realtime_data('期货') #查看前几行 df.head() ``` ```python #获 -------- 该资源内项目源码是个人的毕设,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! <项目介绍> 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。 --------
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值