以下是使用 qstock 获取问财数据的详细教程,结合了多个来源的实用信息:
一、安装与配置
-
安装 qstock
通过 pip 安装或更新至最新版本(当前最新开源版本为 1.3.5):pip install qstock pip install --upgrade qstock
• 部分高级功能(如策略回测)需知识星球会员获取离线包。
-
导入模块
import qstock as qs
二、核心函数:wencai()
通过 qs.wencai()
实现自然语言选股,支持技术指标、财务数据、形态分析等多维度条件筛选。
1. 基本语法
df = qs.wencai('选股条件')
• 参数要求:条件需用字符串格式,多个条件用逗号/分号/空格分隔。
• 返回数据:以 DataFrame 格式输出符合条件的股票及相关指标。
三、常用场景与代码示例
1. 涨停复盘
# 筛选近1个月上市的涨停股(排除ST)
df = qs.wencai('涨停,非ST,上市时间大于1个月')
df[['股票简称', '最新价', '涨停原因类别', '涨停封单额']]
• 示例结果:返回涨停股的关键信息,如封单额、涨停天数等。
2. 阶段表现分析
# 筛选250日内创新高的股票
df = qs.wencai('250日新高,非ST,沪深A,上市时间超过250天')
df[['股票代码', '最新价', '技术形态']]
• 应用场景:追踪长期趋势强势股。
3. 技术指标组合选股
# 均线多头排列 + MACD金叉 + 高换手率
df = qs.wencai('均线多头排列,MACD金叉,换手率大于5%')
• 支持指标:均线、MACD、KDJ、RSI 等。
4. 财务指标筛选
# 高增长企业筛选(营收增长>10%,ROE>15%)
df = qs.wencai('营业收入增长率>10%,加权净资产收益率>15%')
df[['股票简称', '营业利润增长率', '净资产收益率']]
• 财务指标:市盈率、市净率、ROE、资产负债率等。
5. 其他数据获取
• 新股数据:qs.wencai('上市时间不足一个月新股')
• 可转债数据:qs.wencai('可转债')
• 基金排名:qs.wencai('基金涨幅排名')
四、数据来源与功能特性
- 数据源:整合东方财富、同花顺、新浪财经等公开数据。
- 功能模块:
• 数据获取(data):支持股票、基金、期货等多品类数据。
• 可视化(plot):基于 Web 的交互式图表。
• 选股(stock):技术面、基本面、形态选股策略。
• 回测(backtest):向量化与事件驱动框架(部分需会员)。
五、注意事项
- 条件输入规范:避免复杂语句,优先使用问财官网支持的筛选条件。
- 错误处理:若安装后报错,建议检查版本或重新安装依赖库(参考网页3用户报错案例)。
- 数据更新:部分实时数据需依赖第三方接口,可能存在延迟。
六、扩展学习
• 官方文档:参考 GitHub 仓库 qstock 及系列教程。
• 实战案例:通过公众号“Python金融量化”获取策略选股和回测高级教程。
通过上述步骤,可快速掌握 qstock 调用问财数据的方法,适用于量化分析、策略研究等场景。