qstock量化分析库1.3.8版本发布:零门槛解锁量化投研工具

🌟 写在前面:你的qstock该更新了!

在量化投资领域,数据获取门槛高、代码实现复杂、策略回测耗时…这些痛点是否让你望而却步?今天,qstock迎来1.3.8版本升级!本次更新不仅修复了数据接口稳定性问题,深度整合问财选股功能,让你用一行代码实现量化选股。无论你是刚入门的小白,还是资深量化玩家,qstock都能为你提供一站式解决方案


🔥 四大模块全面升级,量化投研从未如此简单

1️⃣ 数据获取(data):提供简洁的金融数据接口

qstock的数据源覆盖东方财富、同花顺、新浪财经等主流平台,支持:

  • 实时行情

    沪深A股、港股、美股、ETF、可转债等20+市场数据

  • 历史回溯

    前复权/后复权价格、分时成交、资金流向(含北向资金监控)

  • 特色指标

    机构调研热度、龙虎榜数据、大宗交易明细(机构动向一目了然)

  • 宏观数据

    CPI、PPI、社融等经济指标,助力基本面分析

新版本重点优化

  • 解除realtime_data接口的200条数据限制,可批量爬取全市场股票

  • 修复行业板块数据报错问题,支持动态更新行业分类

  • 优化问财数据接口

2️⃣ 可视化(plot):交互式图表让数据“活”起来

告别Matplotlib静态图表!qstock基于Plotly和Pyecharts打造动态看盘系统:

  • 智能K线

    叠加均线、MACD、布林带等技术指标,支持Heikin-Ashi平均K线降噪

  • 资金热力图

    行业板块涨跌幅树状图、主力资金流向桑基图(鼠标悬停查看细节)

  • 云图策略

    Ichimoku云图自动生成支撑/压力位,趋势判断更直观

小白友好:所有图表无需手动调整参数,一行代码即可生成网页交互报表。

3️⃣ 选股(stock):问财引擎+量化模型双核驱动

新版本最大亮点❗ 深度集成同花顺问财选股功能,支持自然语言筛选:

python

# 示例:筛选“市盈率<20、ROE>15%、北上资金增持”的股票
qs.wencai('市盈率<20; ROE>15%; 北向资金增持')

同时内置六大策略模型:

  • RPS强度选股

    捕捉强势股(参考欧奈尔CANSLIM体系)

  • MM趋势跟踪

    识别突破性行情(避免震荡市假信号)

  • 资金流模型

    监控主力异动(结合大单净流入与市值占比)

  • 财务指标筛选

    PE/PB/股息率等多维度打分

  • 技术形态识别

    头肩底、箱体突破等模式自动检测

  • 概念热点轮动

    实时追踪题材炒作(如“AI算力”“低空经济”)

Tips:问财功能需提前安装Node.js并升级pywencai库(文末附保姆级教程)。

4️⃣ 回测(backtest):从策略验证到实盘部署

qstock提供两种回测框架:

  • 向量化回测

    基于Pandas快速验证策略逻辑(适合均线交叉等简单策略)

  • 事件驱动回测

    模拟逐笔成交(支持止损止盈、滑点等复杂场景)

VIP专属:知识星球会员可解锁强化版回测引擎,支持backtrader回测可视化等功能。


🚀 如何快速上手?三步完成环境配置

1️⃣ 新用户一键安装

bash

pip install qstock

2️⃣ 老用户升级依赖库

bash

pip install --upgrade pywencai  # 问财功能必备
npminstall jsdom               # Node.js环境支持

3️⃣ 导入即用

python

import qstock as qs
df = qs.realtime_data()  # 获取全市场实时行情

💡 高阶玩家必备:这些隐藏功能你知道吗?

  • 钉钉/微信提醒

    设置条件单触发消息推送(如股价突破年线或大宗折价超10%)

  • 自动化盯盘

    监控异动股,结果直接导出Excel

  • 自定义策略

    提供API接口供用户植入独家模型(如机器学习信号)

  • 数据本地化

    自动缓存历史数据,减少重复爬取耗时

  • 实盘量化

    从模拟到实盘,一站式体验量化策略交易软件Ptrade/QMT


🌐 资源整合:从入门到精通的全路径指南

想深度掌握qstock?我们为你整理了qstock专题学习矩阵

基础篇

            实战篇


                    高阶篇


                        ❗ 重要提示

                        • qstock为完全免费开源项目,部分高级功能需加入知识星球解锁

                        • 如遇安装报错,请检查Node.js环境与PyWencai版本(详见GitHub的Issue区)

                        • 欢迎提交Pull Request共同完善项目,优秀贡献者将获赠VIP权益


                        🔗 立即体验

                        • GitHub源码:https://github.com/tkfy920/qstock

                        • PyPI地址:https://pypi.org/project/qstock/

                        📢 粉丝福利
                        关注公众号「Python金融量化」,回复关键词“qstock”获取:

                        • qstock使用模版(notebook源码)

                        👇会员福利:知识星球会员可获取离线安装包独家策略库,扫码加入解锁更多权益!


                        [声明] qstock数据来源于公开网络,仅作学习交流之用。股市有风险,投资需谨慎。

                        图片

                        关于Python金融量化

                        图片

                        专注于分享Python在金融量化领域的应用。加入知识星球,可以免费获取qstock源代码、30多g的量化投资视频资料、量化金融相关PDF资料、公众号文章Python完整源码、与博主直接交流、答疑解惑等。添加个人微信sky2blue2可获取八五折优惠。

                        图片

                        # 简介 qstock由“Python金融量化”公众号开发,试图打造成个人量化分析开源,目前包括数据获取(data)、可视化(plot)、选股(stock)和量化回测(backtest)四个模块。其中数据模块(data)数据来源于东方财富网、同花顺、新浪财经等网上公开数据。qstock致力于为用户提供更加简洁和规整化的金融市场数据接口,其中可视化模块为用户提供基于web的交互图形简单操作接口;选股模块提供了同花顺的技术选股和公众号策略选股,包括RPS、MM趋势、财务指标、资金流模型等,回测模块为大家提供向量化(基于pandas)和基于事件驱动的基本框架和模型。 读者直接在cmd或anaconda prompt上输入“pip install qstock ”进行安装,或输入“pip install -upgrade qstock”进行更新。 qstock是免费开源金融量化,已在pypi官网和GitHub上发布,更新至1.3.5版本,添加了问财的数据访问功能,通过qstock.wencai(&#39;选股条件&#39;)调用。使用“pip install qstock ”进行安装,通过’pip install –upgrade qstock’进行更新。目前部分策略选股和策略回测功能仅供知识星球会员使用,会员可在知识星球置顶帖子上获取 qstock 的离线安装包。 关于 qstock 更详细的使用方法,请参考微信公众号Python金融量化 qstock 专题系列文章: 【qstock开源了】数据篇之行情交易数据 【qstock数据篇】行业概念板块与资金流 【qstock量化】数据篇之股票基本面数据 【qstock量化】数据篇之宏观指标和财经新闻文本 【qstock量化】动态交互数据可视化 【qstock量化】技术形态与概念热点选股池 【手把手教你】使用qstock实现量化策略选股 【手把手教你】使用qstock进行量化回测 基于qstock量化复盘与自动盯盘 下面为大家介绍qstock各模块的具体调用方式和应用举例。 ```python #导入qstock模块 import qstock as qs ``` # 数据模块 # 行情交易数据接口 ## 实时行情数据 获取指定市场所有标的或单个或多个证券最新行情指标 realtime_data(market=&#39;沪深A&#39;, code=None): - market表示行情名称或列表,默认&#39;沪深A股&#39;, &#39;沪深京A&#39;:沪深京A股市场行情; &#39;沪深A&#39;:沪深A股市场行情;&#39;沪A&#39;:沪市A股市场行情 &#39;深A&#39;:深市A股市场行情;北A :北证A股市场行情;&#39;可转债&#39;:沪深可转债市场行情; &#39;期货&#39;:期货市场行情;&#39;创业板&#39;:创业板市场行情;&#39;美股&#39;:美股市场行情; &#39;港股&#39;:港股市场行情;&#39;中概股&#39;:中国概念股市场行情;&#39;新股&#39;:沪深新股市场行情; &#39;科创板&#39;:科创板市场行情;&#39;沪股通&#39; 沪股通市场行情;&#39;深股通&#39;:深股通市场行情; &#39;行业板块&#39;:行业板块市场行情;&#39;概念板块&#39;:概念板块市场行情; &#39;沪深指数&#39;:沪深系列指数市场行情;&#39;上证指数&#39;:上证系列指数市场行情 &#39;深证指数&#39;:深证系列指数市场行情;&#39;ETF&#39; ETF基金市场行情;&#39;LOF&#39; LOF 基金市场行情 - code:输入单个或多个证券的list,不输入参数,默认返回某市场实时指标 如code=&#39;中国平安&#39;,或code=&#39;000001&#39;,或code=[&#39;中国平安&#39;,&#39;晓程科技&#39;,&#39;东方财富&#39;] ### 某市场所有标的最新行情 ```python #获取沪深A股最新行情指标 df=qs.realtime_data() #查看前几行 df.head() ``` ```python #获取期货最新行情指标 df=qs.realtime_data(&#39;期货&#39;) #查看前几行 df.head() ``` ```python #获 -------- 该资源内项目源码是个人的毕设,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! <项目介绍> 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。 --------
                        评论
                        添加红包

                        请填写红包祝福语或标题

                        红包个数最小为10个

                        红包金额最低5元

                        当前余额3.43前往充值 >
                        需支付:10.00
                        成就一亿技术人!
                        领取后你会自动成为博主和红包主的粉丝 规则
                        hope_wisdom
                        发出的红包
                        实付
                        使用余额支付
                        点击重新获取
                        扫码支付
                        钱包余额 0

                        抵扣说明:

                        1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
                        2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

                        余额充值