01
引言
2023年,既是挑战与机遇并存的一年,也是坚持与创新同行的一年。尽管在数字化媒体的风潮中,面临着传统阅读量下滑的趋势,但我们依然不忘初心,秉承着为读者提供深度的金融量化分析框架的宗旨,不懈努力。除了微信公众号,我们也在知乎、今日头条、CSDN和雪球上开设了同名个人专栏,全网关注量突破了15万,这个数字是对我们内容质量的肯定,也是对我们付出工作的认可。感谢知识星球上1800+的付费圈友们,你们的热情参与和智慧分享,不仅让这个平台充满活力,更是驱动我们不断前行的巨大动力。感谢每一位读者的陪伴,是你们的支持让这一切成为可能。
公众号于2022年开发了Python量化分析库——qstock,得到广大读者朋友的赞誉。这个库集数据获取、可视化、选股和量化回测四大模块于一体,已经向所有读者开源,只需简单的“pip install qstock”命令即可轻松安装。我们致力于为广大金融量化爱好者提供一站式的解决方案,让复杂的量化分析变得触手可及。点击进入文章链接:qstock系列专题文章
为了更好地服务读者,我们对过去五年来发布的文章进行了深入的梳理和整理,形成较为完整的四大篇章,包括Python入门篇、金融数据篇、量化分析篇和策略回测篇,供所有对金融量化有兴趣的读者学习和参考。无论您是初学者还是资深人士,这里都有您需要的知识和灵感。
02
精华文章合辑
01
Python入门篇
分享Python金融量化入门学习路径、量化资源,以及numpy、pandas、matplotlib等量化常用库的入门和应用。Python的编译软件有很多,个人建议安装Anaconda,自带Jupyter notebook和Spyder,其中Jupyter在交互式编程与数据分析上功能十分强大,公众号上所有文章都是基于Jupyter写的。
其次,关于Numpy(数组矩阵)、Pandas(数据处理分析)、Matplotlib(可视化)、Seaborn(可视化)、Sklearn(机器学习)等金融量化常用库的入门和应用。
02
金融数据篇
使用Python获取股票行情、上市公司基本面、宏观经济以及财经新闻等数据,对其进行可视化分析,使用Postgresql (sqlite3)搭建本地量化分析数据库,以及如何使用qstcok免费开源库在线获取行情数据、板块资金流数据、宏观基本面和财经新闻数据等。
【手把手教你】Python面向对象编程入门及股票数据管理应用实例
03
量化分析篇
本部分涉及内容比较多,包括使用Python做对A股市场进行探索性分析,金融统计分析、蒙特卡洛模拟,时间序列建模,Talib技术分析、投资组合、多因子模型分析和基本面量化分析等。
A股数据探索性分析:
2005-2020年A股数据挖掘:谁是最大的牛股?【附Python分析源码】
时间序列专题:
TA-Lib与股票技术分析:
【手把手教你】使用Python对股价的Heikin Ashi蜡烛图进行可视化
趋势预测:基于期货未平仓合约、展期和FII/DII指标【附Python源码】
投资组合分析与多因子模型 :
债券与期权衍生品之QuantLib入门与应用:
【手把手教你】使用QuantLib进行债券估值和期权定价分析
比特币量化分析:
基本面量化分析:
机器学习与深度学习:
其他:
04
策略回测篇
本部分主要是使用Python分析量化策略的评价指标,指数定投策略、机器学习、海龟交易法则和均值回归策略等,以及专题介绍backtrader回测系统的运用和使用qstock进行量化回测。
量化交易策略概述及评价指标:
构建交易策略并进行简单的量化回测:
【手把手教你】使用Logistic回归、LDA和QDA模型预测指数涨跌
手把手教你用Python搭建自己的量化回测框架【均值回归策略】
【手把手教你】获取股票数据并进行量化回测——基于ADX和MACD趋势策略
开源回测框架backtrader专题系列:
【手把手教你】入门量化回测最强神器backtrader(一)
【手把手教你】入门量化回测最强神器backtrader(二)
【手把手教你】入门量化回测最强神器backtrader(三)
backtrader如何加载股票因子数据?以换手率、市盈率为例进行回测【附Python代码】
分形交易策略真的有效吗?基于Backtrader进行量化回测
大小盘轮动策略:如何在上证50ETF与创业板50ETF之间实现高效投资
03
结语
不忘初心,方得始终。在未来的日子里,我们将继续秉承提供优质金融量化知识的理念,与大家一同迎接新的挑战和机遇。感谢每一位读者在这一年中给予的支持与陪伴,是你们,让我们的每一分努力都有了意义。让我们肩并肩,一起踏入充满可能的2024年,追求新的高度,开启新的篇章。
最后为有意加入知识星球的新用户送上200张89元的优惠券,新用户或续费用户在加入前可先添加星主微信 “sky2blue2” 了解更多优惠信息。另外,Python金融量化星球已开通分享有赏,会员分享星球将获得收入的12%。
关于Python金融量化
专注于分享Python在金融量化领域的应用。加入知识星球,可以免费获取qstock源代码、30多g的量化投资视频资料、量化金融相关PDF资料、公众号文章Python完整源码、与博主直接交流、答疑解惑等。添加个人微信sky2blue2可获取相关优惠。